
554 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-2, NO. 6, NOVEMBER 1980 

[5] B. K. P. Horn, R. J. Woodham, and W. M. Silver, "Determining 
shape and reflectance using multiple images," Massachusetts Inst. 
Technol., Cambridge, AI-Memo. 490, 1978. 

[6] R. Jain and H.-H. Nagel, "On the analysis of accumulative differ­
ence pictures from image sequences of real world scenes," IEEE 
Trans. Pattern Anal Machine Intell, vol. PAMI-1, pp. 206-214, 
Apr. 1979. 

[7] J. Potter, "Scene segmentation by velocity measurements ob­
tained with a cross-shaped template," in Proc. Int. Joint Conf. 
Artificial Intel!., 1975, pp. 803-810. 

[8] B. Radig, "Description of moving objects based on parameterized 
region extraction," in Proc. Int. Joint Conf. Pattern Recognition, 
1978, pp. 723-725. 

[9] D. Waltz, "Understanding line drawings of scenes with shadows," 
in The Psychology of Computer Vision, Winston, Ed. New 
York: McGraw-Hill, 1975, pp. 19-92. 

[10] S. Ullman, The Interpretation of Visual Motion. Cambridge, MA: 
M.I.T. Press, 1979. 

Abstract-This paper discusses the problem of determining the three-
dimensional model and movement of an object from a sequence of two-
dimensional images. A solution to this problem depends on solving a 
system of nonlinear equations using a modified least-squared error 
method. Two views of six points or three views of four points are 
needed to provide an overdetermined set of equations when the images 
are noisy. It is shown, however, that this numerical method is not very 
accurate unless the images of considerably more points are used. 

Index remw-Motion analysis, moving objects, three-dimensional mo­
tion analysis. 

INTRODUCTION 

COMPUTER image analysis beginning with Roberts' classic 
paper [20] has concentrated on segmentation, object 

recognition, and the mathematical analysis required to deter­
mine an object's three-dimensional position. The analysis of 
image sequences of moving objects has received some attention, 
almost entirely directed to the analysis of the two-dimensional 
movement of objects. The original motivation for studying 
two-dimensional motion came from a desire to analyze with a 
computer the vast quantity of satellite images of clouds (see 
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■ Endlich et al. [8] and Léese et al. [13]). An abstract model 
of cloud movement was examined in Aggarwal and Duda [1]; 
this work was extended to the analysis of the two-dimensional 

; movement of curvilinear shapes in Chow and Aggarwal [5] 
i and Martin and Aggarwal [16]. In other work on motion anal-
r ysis, Jain and Nagel [12] used difference pictures to analyze 

street scene images. Although the images show pedestrians 
. and cars moving in three dimensions, there is no attempt to re­

cover three-dimensional information from the images. 
It is clear that past research has mainly been concerned with 

two-dimensional motion. In part, this is because the inter­
pretation of images of objects moving in three-dimensions is 

; much more complicated than two-dimensional motion since 
rotation and movement in depth are difficult to analyze. For 
example, rotation in space is defined to be about a line in 
three-dimensional space whereas rotation in a plane is defined 

> to be about a single point in the plane. In addition, parts of an 
^ object can disappear from view as a result of rotation in space; 
\ rotation in a plane does not by itself cause an object to occlude 
L itself. In this paper we shall examine and solve problems in-
1 volved in determining the three-dimensional motion of objects 

from a sequence of two-dimensional images. 
\ Analyzing the three-dimensional motion of an object from 

two-dimensional images requires a mathematical formalization. 
Psychologists have classically studied movement in terms of 
texture gradients and other cues that aid human depth percep­
tion (see Gibson [11] and Braunstein [3]). These psycholo-
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gists use images of points on the surfaces of objects to study 
the movement in depth of the objects; Roberts [20] also uses 
surface points to help determine object depth. By definition, 
the three-dimensional relationship of points on a rigid object 
does not change over time. Consequently, changes in the two-
dimensional spatial relationship of object surface points be­
tween images must be caused by a relative movement between 
the camera and the object being imaged. In studies involving 
binocular vision (two cameras or eyes spaced a known distance 
apart), this change of position of a point between the two 
images is known as the "disparity" in the images of the point. 
A simple triangulation argument gives the depth of the point 
in this case. Thus, the change of position between images of 
points on a rigid object's surface can be used to formalize the 
problem of determining the three-dimensional movement of 
objects in space. 

Consider the sequence of images of a moving object given in 
Fig. 1. This sequence shows a truncated wedge rotating and 
translating. These simplified line drawings gloss over the diffi­
cult low-level processing problems, such as separating out the 
various objects in an image (segmentation) and extracting the 
same feature points (or tokens) on an object in each image 
despite possibly changing illumination conditions. This paper 
does not address these low-level processing problems; instead, 
we assume that the points are given to us a priori. In images 
of the real world, however, we know of no general solution to 
finding the same points on an object's surface in each image. 

Once feature points on an object's surface have been ex­
tracted in each image, we must determine the correspondence 
of points between consecutive images. By "correspondence" 
here we mean the mapping that takes an image of an object 
point to the image of the same object point in the next image 
of the object. This is a difficult problem since an image may 
have more than one moving object and thus many points to 
choose from. The correspondence problem is further compli­
cated by the disappearance of points on an object due to oc­
clusion from other objects, self-occlusion as points rotate out 
of view, shadows, etc. The correspondence problem has been 
examined by Quam et al. [18], Ganapathy [10], and Ullman 
[23]. We shall assume in this paper that the correspondence 
of points between images is known. 

Once the correspondence of points has been established, we 
can attempt to analyze the motion. Here we are confronted 
with a basic question: how is the motion to be represented? 
One method might involve qualitative descriptions such as 
"moving left and away, rotating to the right," etc. as in Badler 
[2]. There still remains the question, however, of how the 
qualitative description is to be calculated. If a more exact 
mathematical calculation were used to derive the qualitative 
description, then the more precise mathematical result would 
also be a valuable characterization. In this paper, we shall take 
the more quantitative approach and use matrices with "homo­
geneous coordinates," as Roberts [20] did, to describe the 
movements of objects. Homogeneous coordinates are an ele­
gant means of representing movement since a 4 X 4 matrix can 
represent any rotation or translation. We have to be sure, 
however, that given these two elementary motion matrices, it 
is possible to represent any motion an object can have in space. 

For example, consider a planet traveling about the sun. It is 
revolving about an axis passing through the sun; at the same 
time it is rotating about its own polar axis. How is this two-
axis rotating movement to be analyzed? What if there are n 
axes of rotation? The translation and rotation 4 X 4 matrices 
are an adequate representation since a theorem from classical 
mechanics (see Coffin [6]) establishes that any motion, in­
cluding the rotation within rotation problem just mentioned, 
can be decomposed into one rotation and one translation. 
The rotation and translation matrices can be multiplied to­
gether to form one matrix useful for predicting the next three-
dimensional position of the object. In addition to representing 
motion, a 4 X 4 matrix in homogeneous coordinates can be 
used to model the projection of object points onto the focal 
plane of the camera. 

Now that we have formalized the problem and decided on a 
means for representing movement we can ask some funda­
mental questions about analyzing sequences of images of mov­
ing objects: 

1) whether the multiple images, and thus object motion, 
help the three-dimensional analysis; and 

2) exactly how much of the original three-dimensional infor­
mation can be recovered from a sequence of two-dimensional 
images. 

The first question is essentially concerned with determining 
what the value of motion is in analyzing images. The second 
question concerns the three-dimensional relationship of points 
on the surface of an object and the entries in a 4 X 4 matrix 
that represents the movement of those points. We shall answer 
these questions in the course of this paper. 

Our analysis will depend on certain key assumptions. For 
example, we assume throughout that all images are from one 
camera. We assume that there is no a priori knowledge of spe­
cific objects or their specific motions, that objects in general 
are rigid, that motion is smooth and continuous, and that cen­
tral projection is the best geometrical description of the image 
formation process. By changing this last assumption to parallel 
projection, an exact model (to within a reflection) for any 
four noncoplanar points can be derived given three different 
views of them, as Ullman [23] has shown. Badler [2] used a 
spherical projection model and was able to predict the point 
positions in succeeding images of translating objects. We have 
assumed that central projection is the best model for how 
cameras work for several reasons: it is the model used in pho-
togrammetry [22] to create maps from real world aerial pho­
tographs; and furthermore, it has been the model normally 
adopted by researchers in image analysis, as in camera cali­
bration; for example, see Sobel [21] or Yakimovsky and 
Cunningham [25]. 

The problems in determining the movement of an object 
from its images are similar in many ways to the problems en­
countered in optic flow analysis and stereopsis. Stereopsis, or 
binocular vision, is the problem of determining the depth of 
objects from two different images. The distance between the 
two imaging devices is assumed to be known. Optic flow anal­
ysis, originated by Gibson [11], depends on a vector field 
formed by points on object surfaces as a camera or eye moves 
through its environment. Some recent work by Williams [24] 
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Fig. 1. Images of a truncated wedge moving in space. 

concentrates on deriving the "focus of expansion" which lies 
along the line of sight of the translating camera. In all of these 
problems separate views of an object are given in which the 
correspondence of points on the surface of objects must be de­
termined and the displacement of these points used to deter­
mine the distance from the camera to the object. There are 
some differences from our work; for example, binocular studies 
normally assume that the distance between cameras is known, 
and optic flow studies assume a moving camera. The problems 
encountered, nonetheless, are very similar, and the results of 
this study should be applicable to these other areas of research. 

PROJECTION EQUATIONS AND THEIR INVERSES 

Roberts [20] defined scene analysis as the necessary mathe­
matical analysis to locate objects in three-dimensional space 
from their two-dimensional images. We want to know whether 
it is possible to determine the position in space and movement 
(translation and rotation) of an object relative to a fixed three-
dimensional coordinate system given the image coordinates of 
projected object points in a sequence of images. We assume 
that the images have been segmented, that the same points 
have been extracted from each image, and that the correspon-
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dence of points between images has been determined. In this 
section, the mathematical equations are given that determine 
what three-dimensional information can be derived from the 
projective coordinates of a point. The equations of central 
projection are also given. 

The image of a point under central projection is a function 
of the point's three-dimensional position, the focal length of 
the camera, and the location and orientation of the camera's 
lens relative to the global coordinate system. Information 
about the camera's position is needed to relate the position 
of points given in two-dimensional camera coordinates to the 
global three-dimensional coordinate system. The necessary 
camera information is the camera focal length F, the orienta­
tion angles 0, 0, and κ of the camera to the global coordinate 
system, and the three-dimensional coordinates of the lens cen­
ter (X0, Yo, Z0). The three angles orient the camera to the 
global coordinate system as follows (assume for simplicity that 
the camera lens has been translated to (0,0,0) of the global 
coordinate system): 0 is a rotation about the X-axis that brings 
the optical axis into the X-Z plane, 0 is a rotation about the Y-
axis so that the optical axis is aligned with the Z-axis, and κ is 
a rotation about the Z-axis so that the x\ y axes of the focal 
plane are aligned with the global X, Faxes. (Note: the use of 
primes in this paper in general denotes the focal plane coordi­
nate system.) It is, of course, impossible to determine the orig­
inal (x, y, z) position of a point from its picture alone. The 
best we can do is determine a line in space on which the point 
falls. The following equations are a function of the camera 
parameters, two-dimensional coordinates (x\y) of the image 
point, and a free variable z\ 

x=XQ + F / ( F - z'){axlx ^ra2ly + a31F) 

y = Y0+FI(F-z,)(a12x' + a22y'+a32F) (1) 

z=Z0+FI(F-z')(a13x' + a23y, + a33F) 
where 

flu = 
012 = 
013 = 
a21 = 
022 = 

023 = 
031 = 
032 = 
033 = 

COS 0 COS K 

sin 0 sin φ cos κ + cos 0 sin K 
-cos 0 sin 0 cos K + sin 0 
-cos 0 sin K 
-sin 0 sin0 sin* 
cos 0 sin 0 sin κ 
sin 0 
-sin 0 cos 0 
cos 0 cos 0. 

: + cos 0 

sin/c 

COSK 

+ sin 0 cos K 

These equations (1) give a locus of points that form a straight 
line in space through (X0, Y0, Z0) and the point (x',y') in the 
focal plane; each point on the line is determined by a specific 
value of the free parameter z . As z approaches -°°, F/(F - z') 
approaches 0 and (x,y,z) = (X0i Y0,Z0); if z is zero, then 
(x,y,z) is (x\y') given in global coordinates. The conse­
quence of these calculations is that given only the image co­
ordinates of a point on an object we cannot recover the full 
three-dimensional information about the object point. The 
best we can do is find a parameterized equation for the ray on 
which the point falls. 

In addition to the equations (1), we also need equations that 
tell what the image coordinates (x'9y') of a point (x,y,z) will 
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be for given camera parameters. The equations are 

χ>=Γ
αιι(χ - χο) + ai2Jy - γο) + 0i3p? - Z0) 

a31(x-X0) + a32(y- Y0) +a33(z - Z0) 

, „02 l (* - Xp) + 022ly - YQ) + 023^ - Z0) 
_ p ^ 

a3l(x - X0) + a32(y - Y0) + 033(2 - Z 0 ) 
Further explanations of the equations in this section may be 
found in [7], [17], and [22]. 

FINDING THE MOVEMENT OF AN OBJECT 
FROM A SEQUENCE OF NOISE-FREE IMAGES 

We want to know how much of the original three-dimensional 
information can be recovered given only the images of a mov­
ing object. It is possible to show that any sequence of images 
is inherently ambiguous. That is, there are an infinite number 
of objects that produce the same sequence of images. The ob­
jects are all similar in structure and movement. An example 
should make this clear. Assume that an object is translating 
at velocity (p,q,r) and rotating with velocity ω about an axis 
oriented by angles a and β to the global coordinate system, 
and point (a,b,c) is on the rotational axis. Assume that a 
camera has taken a sequence of pictures as the object moved 
through its field of view. Now the same sequence of images 
can be produced by another object if it is constructed in the 
following manner. The new object is twice as far away as the 
original object and twice as large (from the camera's point of 
view) so that it gives the same initial image. Let its transla-
tional velocity be (2p, 2q,2r), its rotational velocity be ω, its 
axis of rotation have orientation angles a and ]3, and let its 
point on the axis of rotation be twice as far away (from the 
camera's point of view) as the point (a, b, c). In general, the 
scaring factor need not be two, it can be any real number 
greater than 0 (if it equals one, the new object coincides with 
the original object). Note that the angular information con­
cerning rotation is not ambiguous. In this section we show 
how to find the movement and three-dimensional model of 
points on an object's surface from a sequence of noise-free 
images up to a scaling factor; that is, by setting the scaling fac­
tor to an arbitrary value we can find a particular movement 
and model for points on the object. 

We have assumed that the camera is stationary and the ob­
ject moving. It is convenient to reformulate the problem such 
that the object is stationary and the camera moves. 

To solve the problem, two views are needed of five points 
not all in the same plane. The global coordinates of each point 
are variable, so five points produce 15 variables. The global 
coordinates and 0, 0, κ orientation angles for each camera po­
sition are also variable producing 12 more variables. Thus, 
there are a total of 27 variables in the problem. Each point 
produces two projection equations [given by (2)] per camera 
position for a total of 20 nonlinear equations. To make the 
number of equations and unknowns come out even, seven vari­
ables must be known including one variable that will determine 
the scaling factor. We shall now examine several different ways 
of setting the seven variables correctly and use the one that is 
most easily solved. In one problem setup, the three-dimensional 
coordinates of two points and one of the three coordinates of 
another point are known: (0,0,0), (1,0,0), and (?, ?, 0). The 
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points (0, 0,0) and (1,0,0) fix the X-axis and also the scaling 
factor; the coordinate system can be rotated about this X-axis 
until the third point lies in the X-Y plane, thus setting its third 
coordinate to zero. Although this problem setup is correct, it 
is difficult to solve numerically since good original estimates 
for unknown variables (especially camera orientation angles) 
cannot be determined. Another correct setup for this problem 
sets all coordinates and orientation angles of the first camera 
to a value of zero. This sets six variables. The seventh variable 
and the scaling factor are set by letting the x- coordinate of the 
second camera be an arbitrary constant (equal to 1.0, say). 
Reasonable estimates can be made for the unknown variables, 
but the difficulty with this problem setup is that in some spe­
cial cases the x-coordinate of the second camera should be 
zero. In these cases, setting the x-coordinate to a nonzero 
constant is incorrect. In fact, it is possible that the x,y, z co­
ordinates of the second camera are all zero (no camera trans­
lation) in which case a different means of setting the scaling 
factor must be sought. Thus, we need a different formulation 
for the problem which will now be explained. 

We will set the X0) Y0, Z0 position and 0, φ, κ orientation 
angles of the first camera by making all six variables equal to 
zero. In addition, the z-component of any one of the five 
points is set to an arbitrary positive constant. We showed ear­
lier that the best result possible in locating the three-dimen­
sional position of a point on an object is to find (sx, sy, sz) 
where s is an arbitrary scaling factor. By setting the z-com­
ponent of the position of a point to an arbitrary constant, we 
are fixing the scaling factor. Once the z-component of a point 
is known, the x anà y components can also be found using the 
inverse of the projection equations (2) (by determining z from 
z and the focal length). The situation is shown in Fig. 2. There 
are now 18 projection equations in 18 unknowns (actually, 
there are 20 equations, but two of them have no unknowns); 
the equations of projection, however, are nonlinear. 

Unlike linear equations, there is no developed systematic 
theory for solving systems of simultaneous nonlinear equations. 
Finding a closed-form solution for any system of nonlinear 
equations is rare. Consequently, most nonlinear systems are 
solved using numerical methods developed to achieve approx­
imate answers. Numerical methods sometimes fail because 
either they do not converge or converge to the wrong answer. 
All numerical methods require an initial guess for the unknown 
parameters. How good the initial guess is normally determines 
whether the numerical method converges to the correct answer. 
We have found that the system of nonlinear projection equa­
tions explained above can be solved by using a modified finite 
difference Levenberg-Marquardt algorithm due to Brown [4], 
[14], [15] without strict descent that minimizes the least-
squared error of the 18 equations. This routine is available 
under IMSL as ZXSSQ [26]. It is a modification of the classi­
cal least-squared error technique originated by Gauss at the 
end of the eighteenth century. Brown's method performs a 
smoothing operation not available with other techniques which 
normally permits convergence to the correct answer. 

The method employed is iterative and requires an initial 
guess for each unknown parameter. If we assume that the 
camera is taking snapshots rapidly, then its position will change 

x0
= V Z 0 = o 

o 2 < o 2 ' 

θ 2 , φ 2 ,Κ 2 

unknown 

• (X i , y ¡ , z ¡ ) i = 1 ,4 

• unknown 
( x 5 y j Z s ) · 

known 
• 

Fig. 2. Problem setup with moving camera. 

only slightly between photographs. In particular, we can make 
the simplifying assumption that Θ = φ = κ = 0 for the second 
camera position and use simple parallax differences to get rea­
sonable initial estimates. The parallax equations are 

X P A R A L L A X = JCÍ -X2 

X = Xo2 · (xi /^PARALLAX) 

Y = Xo2 * (y'i /XPARALLAX) 

Z = (Xo2 · F)IX?ARALLAX 

where X, Y9 Z are the three-dimensional coordinates of the 
point to be estimated; x[, x2, and^J are the x and j photo 
coordinates from camera images one and two; F is the focal 
length; and X0 is the x~coordinate of the second camera posi­
tion. X0 is unknown and must itself be estimated before the 
parallax equations can be applied. This is easily achieved since 
the three-dimensional coordinates of one point are known: 
the point for which the z-coordinate is set to an arbitrary con­
stant. Using the known coordinates of this reference point 
and the parallax equations gives several somewhat different es­
timates of X0 . 

The possibility of several different values for X0 , and hence 
different original estimates for all the points, raises the ques­
tion of determining which initial estimate is better. Indeed, 
what is the best means of selecting which of the five object 
points is to be the reference point whose three-dimensional co­
ordinates are known? We allow each point in turn to become 
the reference point and then for each guess of Xo2 estimate 
the three-dimensional position of each of the other four points 
as well as Y0 and Z0 (using the inverse of the central projec­
tion equations). The least-squared error of this set of esti­
mates is calculated by substituting the estimates for unknown 
variables in the equations for central projection (assuming for 
camera two that θ2 =φ2

 =*2 = 0.0°) and the answers differ­
enced with the observed projective coordinates of the points. 
The errors are all squared and added together; the set of esti-
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mates with the least-squared error is taken as the best initial 
guess. There are only 15 sets of initial guesses so this prepro­
cessing time is quite small, and without it, the initial estimate 
is not always good enough to allow convergence to the right 
answer. 

Brown's method without strict descent was very successful 
in converging to the correct answer in a large number of trials 
with analytically correct data. (The data were generated by a 
computer program that takes as input the three-dimensional 
position of points on an object, the movement of the object, 
and the position of the camera; the program moves the object 
and mathematically projects an image at prescribed time inter­
vals. The photocoordinates are used to ten places of accuracy.) 
The method failed to find the exact answer only in cases where 
a moving object was rotating (no translation) and the axis of 
rotation passed through the lens of the camera. The answer 
that this numerical method computes gives both the object's 
movement since the movement of the camera is calculated and 
the three-dimensional model for the points on the object. By 
negating all values of the solution, a second solution is attained. 
This solution amounts to setting the z coordinate of the refer­
ence point to the negation of the original arbitrary scalar. The 
method typically converges to the correct answer in 15 s on 
a Cyber 170/75 and hence is reasonably efficient. 

It should be noted that a large number of other methods 
were tried on this system of equations: Brown's algorithm 
with strict descent, Newton's method, normal least-squared 
error, Fletcher-Powell [9], and several other methods designed 
to deal with simultaneous nonlinear equations. Newton's 
method and least squares were also used with many different 
step lengths. Some of these methods converge to answers that 
are close to correct, but others do not converge at all. Only 
Brown's method without strict descent regularly converges to 
the correct answer. 

Our work is somewhat like the camera calibration systems 
of Sobel [21] and Yakimovsky and Cunningham [25]. In 
their work multiple images of points together with a central 
projection model and numerical methods are used to deter­
mine camera parameters such as focal length, position, and 
orientation. These studies, however, have considerably more 
information about the three-dimensional positions of points 
than we are assuming. Thus, the problems being solved and 
the information given for the calibration systems are different 
from our work. 

FINDING ANSWERS FROM NOISY IMAGES 

We have been implicitly making two very important assump­
tions: that the objects being observed are rigid and that the 
images of the object are noise free and thus completely accu­
rate. The first assumption is an important restriction since the 
problem solution presented does not work with images of 
moving, highly nonrigid objects. The second assumption is 
not reasonable. In this section we shall explore the problems 
introduced when the images are noisy. 

In effect, when noise is added to the images of the object it 
is equivalent to taking perfect photos of an object that is not 
quite rigid—jello-like is an apt metaphor. To test the effect of 
sensor noise and digitization error on the numerical method 
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described in the previous section, from one to four pixels were 
randomly added or subtracted from the exact photocoordinate 
data for a moving object. 

One of the main reasons for using a least-squared error tech­
nique to solve a problem is to make adjustments to observa­
tions that contain error (noise). Adjustment is only possible, 
however, when there are more equations than unknowns. Two 
views of five points are therefore inadequate for noisy data 
since there are the same number of equations as unknowns. 
Two views of six points or three views of four points produce 
22 equations in 21 unknowns using the same problem model 
discussed in the previous section. Examination of experimental 
runs using overdetermined systems of equations shows that 
minimal over de termination is not very accurate. It is only 
with considerable overdetermination (two views of 12 or even 
15 points; three views of seven or eight points) that the results 
become accurate. Clearly, attaining good accuracy depends on 
considerable overdetermination. It should be noted that in 
some examples we tried, Brown's method without strict de­
scent would not converge using a reference point that pro­
duced the minimum squared error from its original estimate. 
By trying a different reference point, and thus a different ini­
tial estimate, that produced a small squared error, convergence 
to a satisfactory result was achieved. The Appendix has a 
graphical comparison of some of the overdetermined experi­
ments. For the two views case, the model of the object im­
proves considerably, and the camera position improves some­
what as the number of points increases. For three views, the 
opposite effect seems to hold: the camera positions' accuracy 
improves considerably and the model points' positions (orig­
inally fairly good) improves somewhat. 

In addition to synthetic data, an experiment was run using 
laboratory images, 108 X 108, from a rather noisy image dis­
sector camera. The images used appear in Roach and Aggarwal 
[19]. In general, these images contain too few points to as­
sure accurate results. The images of three different objects 
were used with three views of four points and three views of 
five points. The results verify our findings that too few points 
result in an inaccurate answer. 

CONCLUSIONS 

This work is directly related to the problems encountered by 
researchers in optic flow studies, as mentioned in the introduc­
tion, although the findings here have no bearing on finding the 
"focus of expansion" for a translating camera. Gibson's tex­
ture gradients [11], however, seem to be very much related to 
the work presented here. 

Roberts [20] originally used least-squares analysis together 
with simple models and a support assumption to locate objects 
in space given one image of six points on the object. This study 
shows that it is possible with more than one view to dispense 
with the model. It is possible, in fact, to determine the three-
dimensional relationship of the points on the object as well as 
its movement (up to a scale factor) from the multiple views. 
This is also the conclusion of Ullman's recently available dis­
sertation [23] which uses a novel closed-form solution for re­
stricted motions of objects from noise-free central projection 
images. For unrestricted motion, his method requires an im-
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Fig. 3. Average distance from computed model point to correct model point versus number of points. 
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Fig. 4. Average distance from computed camera position to correct camera position versus number of points. 

practical computation in a very large (infinite) search space. 
Another problem with central projection according to Ullman 
is that perspective effects are often small (especially for small 
objects), and thus noise makes central projection an unsuitable 
model for determining three-dimensional structure and move­
ment. Obviously, no method can succeed in the case where 
noise effects overwhelm image changes due to motion. We 
have shown in this paper that given noisy central projection 
images, the movement and three-dimensional relationship of 
points can be attained only when there are considerably more 
equations than unknowns. We have assumed that noise does 
not overwhelm image changes caused by the movement of ob­
jects. We chose to use synthetic data originally to ensure that 
the numerical model adopted converges to the correct answer 
and later as a control over the accuracy of the answer when 
noise was added to the data. The need for considerable over-
determination and thus the images of many points reempha-

sizes a problem that no one has solved since Roberts' paper: 
how to find the correct tokens on the surface of the object in 
images (in our case, the same tokens in every image). Note 
that we are not referring to the well known correspondence 
problem. Without the ability to determine reliably the same 
feature points in each image, the whole analysis scheme fails. 
Finding points on blocks as in figure one is easy; finding iden­
tical points in each image of a sequence from the real world is 
considerably more difficult. Future research will have to de­
vise a reliable low-level processing solution for this problem. 

APPENDIX 

Here we present graphical evidence that considerable over-
determination improves the computation of both the model 
of the object and the camera position. 

Figs. 3, 4 and 5 show graphs derived from the three experi­
ments, labeled A, B9 and C, run with two views of a varying 
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number of points. Each experiment was run using a different 
object that had its own movement. The z-distance to the ref­
erence point in each example was set to 10. The typical dis­
tance to the reference point, therefore, was on the order of 
15-20 units. Three sets of statistics were kept for each exper­
iment: average distance from computed model points to cor­
rect model points, distance from the computed camera posi­
tion to the correct camera position, and average angular error 
of 0,0, and K. 

Each graph shows an average value for each of the three ex­
periments. The " 4 " token denotes the value for the A experi­
ment, etc. In addition, to indicate the trend of the data, the 
average of the three experiments is connected by a solid line in 
the graphs. 

The first graph shows the average distance between the model 
points for the computed answer given noisy data and the cor­
rect answer assuming no noise. For the 6, 7, or 8 point cases, 
there is one point whose computed coordinates are extremely 
poor. Note that there is no average distance for the A or C ex­
periments with eight points since their averages were too large 
to fit on the graph. In general, two views of fewer than nine 
points result in a numerically unstable model of an object. 

The second graph shows the improvement in the second 
camera position as the number of points increases. The im­
provement does not appear to be very great mainly due to the 
unusually good camera position for the A experiment when six 
or seven points were used. 

The third graph shows the average error for the angles 0,0, 
and K. There does not seem to be any improvement here as 
the number of points increases. The average error is about 
0.1 rad. 

In conclusion, the model of the object showed a marked im­
provement as the number of points increased, the camera posi­
tion showed a modest improvement, and the angular orientation 
of the camera showed little or no improvement. 

Experiments with three views showed the model of the ob­

ject to be fairly good with minimal over determination, but the 
camera positions were poor until there were three views of at 
least seven points. 
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