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Motion of physical objects in the world is, in general, nonrigid. In
robotics and computer vision, the motion of nonrigid objects is of
growing interest to researchers from a wide spectrum of disciplines.
The nonrigid objects being studied may be generally categorized
into three groups according to the degree of deformation of body
parts: articulated, elastic, and fluid. In articulated motion, individ-
ual rigid parts of an object move independently of one another and
the motion of the whole object is nonrigid in nature. Elastic motion
is nonrigid motion that conforms to a certain degree of continuity or
smoothness. Fluid motion violates even the continuity assumption
and may involve topological variations and turbulent deformations.
This paper presents an overview of existing work on articulated and
elastic motion, motivated by problems relating to the motion of the
human body and of an animal heart, respectively. We study various
approaches for recovering the 3D structure and motion of objects
through a sequence of images in a bottom-up fashion, a strategy
widely employed by various investigators. These approaches are
classified as (1) motion recovery without shape models, and (2)
model-based analysis. In the discussion of each algorithm, we also
include a description of the complexity of feature and motion con-
straints, which are highly related to each other. @ 1998 Academic Press

1. INTRODUCTION

but the motion of the whole object is nonrigid. This type of mo
tion is known agrticulatedmotion. On the other hand, nonrigid
motion of coherent objects includes motions such as the beati
of a heart, the waving of a cloth, or the bending of a metal she
where the shape of the object deforms within certain continui
constraints. This type of nonrigid motion is classifiedees-
tic motion. In this paper, we consider these two specific type
of motion. Our study is motivated by problems encountered |
computer vision studies of the human gait and the motion of tl
human body as well as the motion of an animal heart, whe
the constraints are related to continuity and smoothness. In b
cases, it is of considerable importance to characterize both 1
structure and motion of the studied object. The motion of fluid
is not considered in this paper.

The analysis of articulated motion, especially human motio
has been motivated by a large number of applications. For i
stance, automatic tracking of human motion using cameras ¢
be applied to surveillance and traffic monitoring. If we proces
the motion analysis further to gait level and recover the 3D stru
tures of articulated objects, it may be useful to applications su
as (1) kinematic analysis of the movements of athletes in scie
tific training, (2) clinical evaluation of patients in biomechan:
ics, (3) computer graphics and animation in entertainment, a
(4) man—machine interfaces via gesture signaling. The applic

In computer vision research, motion analysis has been largéifyns of elastic motion also span a wide spectrum. For examp

restricted to the study of the motion of rigid objects. However, iapplications related to facial recognition and recovery, mode
the real world, nonrigid motion of objects is far more commorhased image compression, animation of nonrigid objects, a
Driven by a wide range of applications such as medical imaginglinical examination of the left ventricle, all involve the anal-
sports training, image compression, graphics animation, vidgais and 3D structure recovery of moving objects with elast

conferencing, and content-based query of multimedia databageeperties.
there is a growing interest in the study of nonrigid motion. Since nonrigid motion encompasses a wide range of pos
Nonrigid motion may be generally classified into three grougde motion transformations, a general paradigm for estimatir
[41] according to the degree of deformation of body parts: thgotion parameters would be extremely difficult, if not impossi
motion of rigid parts, the motion of coherent objects, and the mble, to develop. Investigators have proposed various approac
tion of fluids. Motion of rigid parts occurs in situations wherdo deal with different motion transformations, along with cer
the individual rigid parts of an object move independently of ort@in restrictions imposed on the object behavior. This pap
another. In this case, the motion of each constituent part is rigikamines the trends in the research on articulated and ela
motion. A taxonomy of motion types is included to give ar
overview of the general types of nonrigid motion and their formé
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NONRIGID MOTION ANALYSIS 143

reviews ofarticulatedandelasticmotion, respectively. Finally, e Elastic motionis nonrigid motion whose only constraint is

our conclusions on the current state of nonrigid motion analysieme degree of continuity or smoothness.

are presented in Section 5. e Fluid motionviolates even the continuity assumption. It
may involve topological variations and turbulent deformations

2. TAXONOMY OF MOTION TYPES )
The following review is restricted to two categories of non-

Nonrigid motion was first classified into three categories-figid motion, namely, articulated and elastic motion, due to th
articulated motion, elastic motion, and fluid motion—by Huanigjterests of the authors. In discussing each type of motion, v
[41]. Goldgofet al.[34] refined the classification according tofollow the bottom-up strategy which most investigators apply t
the mean and Gaussian curvature changes of the object suragomplish various high level tasks.
and defined three restricted classes: isometric, homothetic, and
conformal motion. 3. ARTICULATED MOTION

Kambhamettuet al. [50] proposed an extended classifica- . o . o i
tion scheme based on the degree of nonrigidity of the objects.T "€ focus of this section is articulated motionin particu-
Figure 1 depicts the classification tree for the motion of objedf¥, Motion analysis which utilizes the characteristics of object
according to Kambhamettu's definition. The motion of objects f@P€ and jointed body parts. A number of researchers [3,
generally divided into two classes: rigid and nonrigid motion-/» 33, 78] have focused on high-level processing of motia
Nonrigid motion is further subdivided into the restricted ang"@lysis using temporal data of joints in 2D or 3D. Articulatec
general classes according to the degree of deformation. Arti€iotion is considered as an ordered sequence of various ste

lated motion falls into the restricted class, whereas elastic motighPhase vectors [13, 17]. Recognition of different gestures c:
falls into the general classes of nonrigid motion. be reduced to finding the specific order of these atomic motic

The definitions of the different motion classes are briefly d§tates corresponding to prototype gestures. We do not pres

scribed as follows: a detailed discussion of this type of approach because the nt
rigidity of the human shape is not considered.

¢ Rigid motionpreserves all distances and angles and has ndStudies of articulated motion may be classified as those tf
associated nonrigidity. usea priori shape models and those that do not. This classific

o Articulated motionis piecewise rigid motion. The rigid tion relies on whether knowledge of the object shape is employ
parts conform to the rigid motion constraints, but the overdh the motion analysis. Both classes follow certain standard pr
motion is not rigid. cedures to accomplish the defined tasks by using a bottom-

¢ Quasi-rigid motionrestricts the deformation to be small.approach: (1) feature extraction, (2) feature correspondence, ¢
A general motion is quasi-rigid when viewed in a sufficiently3) motion analysis. In cases where thpriori shape of the ob-
short interval of time. ject of interest is unknown, the analysis usually starts by extrac

¢ |sometric motionis defined as motion that preserves thig objectfeatures, such as joint or corner points, edges, surfac
distances along the surface and the angles between the cuarek3D blocks. Certain assumptions about the object motion &

on the surface. then imposed to establish feature correspondence. Based on
¢ Homothetic motiors motion with a uniform expansion or identified feature correspondence, high-level tasks such as m
contraction of the surface. ing body segmentation, joint location, and 3D recovery of th

¢ Conformal motioris nonrigid motion which preserves thestructure can be performed. In approaches uaipgori shape
angles between the curves on the surface, but not the distanoesdels, the feature correspondence phase is replaced by ma
ing the 2D image sequence to the 3D geometrical model da
Therefore, the model configuration determines the complexi
of the matching. Typically, the shape of the object of interes
(usually human form) is modeled by either stick figures or vol
umetric graphics. Human motion is normally measured by th
movements of the lower limbs [12, 52, 69, 101], such as th
velocities of the hip, knee, and ankle, or the angular velocit
of various body parts. After the relationship between the imac
and model data is established, the 3D structure of the object ¢
be fully recovered.
Although the two methodologies described above are bas
on different scenarios, they also can be combined to accompli
@ complex and high-level tasks. For example, a complete syste
can start with extracting coarse features at low level and perfor
FIG.1. The classification tree for motion of objects defined by Kambhamettii€ basic identification. Then a model with finer details can b
et al. The asterisk indicates the two areas we focus on in this paper. used to make the feature correspondence and motion analy

Non-rigid Motion

Rigid Motion

Restricted class
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more accurate. Using theepriori shape model also verifies thestead, algorithms use certain assumptions to solve problemsiii
former identification. Niyogi and Adelson’s work [69] fits thisparticular area, mostly to simplify the process of feature corre
scenario closely. Other work discussed subsequently morespondence. One widely used assumption is known asrttz!

less focuses on a certain subset of this scenario. motion assumptign.e., the assumption that the motion betweer
consecutive images is small. This is addressed or indicated ir
3.1. Motion Analysis without a Priori Shape Models fairly large number of publications, e.g., [7, 8, 30, 48, 57, 100]

. Another approach is to add constraints on the change of mov
Among the approaches that do not agariori shape models, ; )
ments spatially or temporally. For example, smooth motion cor

there is a large diversity in the feature characteristics and mOt'sot?aints [82], such as constant velocity or constant accelerati

assumptions that determine the complexity of feature corresp “8], can reduce the ambiguity of feature matching between a

dence, motion gnaly5|s, and other high level processes. Thjasceent frames. In addition to smooth motion constraints, Rash
problems are discussed below.

[82] also adopted the heuristic assumption that points belon
ing to the same object should have a higher correlation in tf
projected position and velocity. In a similar scenario, Webb an
The simplest feature is probably the well knomoving light Aggarwal [100] imposed théixed axis assumption.e., that
display (MLD) [31, 46, 82]. Johansson [46] first showed thatevery rigid object movement consists of a translation plus
human eyes can interpret a moving human-like structure witbtation about an axis that is fixed in direction for short period:
MLDs only. Further studies by Rashid [82] found that the strongf time.” In their work, the motion of the object is assumed to be
relationship between the movements of related points canihe plane parallel to the image plane, which justifies the use ¢
used directly for 3D reconstruction. Similar to Johansson’s egrthogonal projection. The rigidity of the connected parts make
periments, Rashid used projected MLDs of a person walkititgoossible to recover the 3D structure of jointed objects. Qia
along different paths as input. Along this vein, Webb andnd Huang [80] assume perspective projection instead. Oth
Aggarwal [100] extended the study of the Johansson-type figugemstraints, such as coplanar motion, fixed axis, and at least o
for a 2D image sequence. The object studied by Qian and Hudmrgpwn joint, are also imposed to aid the construction of thei
[80] is similarly treated as a collection of rigid lines linked bysystem. In [38], constraints were imposed based on the rigidi
points. The difference is that the stick figures in [80] are obtained articulated parts, such as constant distance, parallelism, a
from synthetic 2D data. In [38], Hel-Gat al. measured 3D po- coplanarity between certain points.
sitions of the feature points from stereo image pairs instead of
using the 2D projection of 3D points as the input. Motion anaB.1.3. Feature Correspondence

ysis is_ conducted based on the location of eaF:h pointin the Iocal:eature correspondence is usually the mostimportantand d
coordinates of the component where the point belongs and H&%Ittaskin motion analysis. Since the inputis usually unlabele

orientation of this component relative to the viewer coordlnategnd not explicitly identified in each frame, tracking features fron

. istecefnatlr\tlivorlk tb 3& Kzrak?kt(:ral' [ﬁ7r11 a;titerr]npt?nto l)c:t? :t? tgfi one frame to the next becomes especially challenging. As me
joints o culated objects through motion using extracted nyg, o 4 earlier, well-defined constraints are usually introduced 1

2]0012' -I;ge':oléz(;sc;;sziﬁz?;mere;ljérzgse: dazlgzggt?g:'r minate invalid matches and distinguish unique connection
brep g ge, 9 ' characteristics of the shape representation also influer

fitting, and ribbon extraction, to achieve satisfying results. Sim- ) : . : )
larly, Kakadiariset al.[48] used 2D contours as shape represe(gu;e complexity of the matching algorithm. There is always :

3.1.1. Feature Characteristics

. . . . . . rade-off between the extraction of features and the establis
tations for segmentation and motion estimation. Joints are

termined as the overlapping area of two moving subbarts ba ent of feature correspondence. For higher level features, t
i pping ar 9 P ALE! king and matching process become relatively easier since
on motion and shape information.

. . . . number of f res is much smaller compar low level on
The 3D block is another feature being studied. The moti umber offeatures is much smaller compared to low level one

. o X traction of stable high-level features from animage, howeve
analysis by Asadat al. [7, 8] deals with line drawings gener- regains a tough problem.

ate_:d by a C(_)mputer, which serve as the orthogonal projection o ashid [82] made good use of the smooth motion assumptic
atime-varying block’s world. Recent work of Eggettal. [30] for matching between consecutive frames. Feature correspc

ut|||zes_ range images of 3D blocks and converts the point 'Yence is established by minimizing the difference between tt
formation into complete 3D boundary descriptions. In [30], th xpected position of each point and the actual position of th
object is made up of three portions: part, connection, and link-

) : . corresponding point. MLDs of simple objects can be tracked a
age. A.” the vertlcgs used for feature matching are Charame”Zcelfirately, but velocity information must be incorporated for com
by their 3D coordinates.

plex objects. He tried to get around the difficulty of determining
theinitial velocity by simply assuming that tracking always start:
at a clearly interpreted frame. Hel-@ral. [38] applied the Ex-

It appears that no versatile algorithms exist for the nonrigiénded Kalman Filter to enforce the imposed constraints into tt
motion analysis of complex and variable nonrigid objects. Ipose solution. The correspondence is considered valid when t

3.1.2. Motion Assumptions
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error between the predicted position and measured positiorp@sitions of points along with their projected velocities. The
minimized subject to the rigidity constraints of the subparts. edges of the graph are weighted by the Euclidean distance |
Compared to points, using 2D contours as a high-level featureeen the nodes. Thennainimal spanning treés formed and
reduces the possibility of false matching but increases the btive graph is separated into clusters based on the cost of the
den of preprocessing tasks. After successfully extracting ribbdiasiction [72]. Similar techniques are applied to determine th
and their symmetric axes, Kurakageal. [57] classify ribbons intraobject relationship, except that rotation becomes an impc
into layers in terms of their widths. Small interframe motiomant factor in the analysis.
ensures correspondence between ribbons in the same layer witlm Kurakake’s work [57], ribbon motion is used to locate the
a similar axis angle. Matching one ribbon in one frame witjoints of the moving object. After ribbons are extracted, thos
two ribbons in the next frame is allowed in case the articulaepresenting the background or still objects are removed fro
tion appears or disappears. Detected articulations are verifeahsideration according to the displacement between adjac
using matching results. In Kakadiaris's work [48], feature coframes. The articulations are located among connected or clc
respondence is solved by accumulating knowledge of the 2ibbons. Finally, the description of the structure of the objec
deformable model, which is derived solely from previous imef interest is integrated. Recent work of Kakadiatsal. [48]
ages. The model is initially defined as a single part object. Ases a similar scenario. They combine the three courses, wh
different postures of the object occur, the object evolves intme segmentation, shape, and motion estimation, together in:
various subparts based on thending deformatignconsisting evolution of the data-driven deformable model. Joints of movin
of three zones with different motion types: tfieed zonethe parts are identified as the connections of the existing segmer
bending zongand theelocation zoneTherefore, the model de- The work by Asad&t al.[7, 8] assumes that each object con-
forms into different part models accordingly. At the end of theists of a main body and its subparts (see Fig. 2). Therefol
process, joints are located as the connections of the subptiiey focus on multiaxis motion analysis and object segmel
based on motion. tation based on the rigidity of the part shape. 3D geometric
Tracking the motion of 3D blocks is more complicated due fparameters such as orientation and edge lengths are conside
the possible occlusion of surfaces, edges, or vertices of objeets matching primitives for the motion. Motion is segmented int
Based on the work of Huffman [42], Clowes [22] and Waltsubsequences of translation and rotation only. They use a te
[99], Asadaet al. [8] applied a transition table of junction la- nique calledGaussian sphere mappitig4] to find the number
bels and contextual information between consecutive framesoftaxes along with the rotation vectors from an image sequenc
analyze the structural change. The vertices are used as the piaditional constraints such as constant velocity or acceleratic
itive for feature matching. All the labeled lines are segmented the vertices are employed to resolve ambiguity. Along thi
into objects, and the correspondence of each junction througkin, Eggertet al. [30] sought to obtain the potential connec-
out the image sequence is established using an object-to-obfexnts between the parts after the feature correspondence is
matching method. The 3D vertex matching in Eggert [30] is cotablished. Linkages are detected by computing causation rati
ducted by using the maximal point matching scheme of Cherhich account for the relationship between the movement «
and Huang [20]. The algorithm produces groups of three or mdweo parts.
points satisfying local distance and angular constraints in each
group. Constraints such as shape rigidity, planarity and small
interframe motion are incorporated in order to eliminate mis-
matched sets and identify the proper correspondence. The opti
mal match is found by selecting the minimum among the sums
of the square error of all possible attributes. In the final stage, the
global consistency of point sets is guaranteed throughout the en .
tire image sequence, eliminating the possibility of “accidental” !
alignment.

Object A (main body)

Object B
(A’s subpart)

3.1.4. Motion Analysis -

N

Once the feature correspondence is established, motion vec
tors are recovered to reveal the underlying structure of the ob-

ject. High-level tasks such as segmentation, image compres: 7
sion, gait recognition, or structure recovery can be subsequently /
pursued. A
Rashid [82] took advantage of the heuristic observation that Object C
velocities and positions of points belonging to the same object in (B’s subpart)

consecutive frames are highly correlated. He constructs a graph
with four dimensional nodes, which is formed by the projected FIG.2. The main body and its subparts (derived from Asada [7, 8]).
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Among the high-level processes in motion analysis, one of
the conventional tasks is to reconstruct 3D structure, using ei-
ther spatial or temporal information. Kakadiaesal. [47] at-
tempted to reconstruct the 3D structure of a human body part
from three mutually orthogonal views. Since the use of multiple
cameras increases the computational cost, monocular methods Left shoulderg
are normally used in the study of articulated motion when depth
information is needed. In Webb and Aggarwal’s work [100],
thefixed axis assumptiandicates that a point connected to the
fixed axis lies in a circle during its movement. When the circle
is projected into the 2D image plane, it becomes an ellipse. The  Left elbow® Pelvis P Right elbow
ellipse is determined from a real image sequence. Thus, the 3D @ €
structure of points belonging to the rigid parts of an articulated Left hip Right hip
object can be computed through the fitting of the ellipse. Since
the validity of the system depends on the shape of the projected Left wristy ® Right wrist
ellipse, the method is void if there is no rotation, or if the ro-
tational axis is perpendicular or parallel to the image plane. In
these cases, either there is no circle, or the projected circle is a
circle without depth information, or a line. Qian and Huang’s
work [80] focuses on the high-level theoretical analysis of artic-
ulated motion. They attempt to estimate the depth of the joints
in a stick figure via decomposition of the object. The system O Left ankle
equations are established .On the _assumptlons of the rlgld.ltyF(I)g}. 3. A stick-figure human body model (based on Chen and Lee’s wor
the parts and coplanar motion. Uniqueness of the solution is ajj:
alyzed for three cases: (1) two points in four frames, (2) two
points in three frames, and (3) three points in two frames. The

they adopt the continuation method to estimate the depth in1‘d1efrs [39, 84], and spheres [71]) better represent the shape

mation of the whole system. Experiments on synthetic data haé/ee human body, but require more parameters for computati

. . . . ._Fach model can be scaled according to the height of the subje

verified their algorithms. In their method, the system equatlot&?dta 2] and Peralest al. [77] incorgorate botr? stick figuresj

are hard-constrained and thus sensitive to noise corruption. . ' ! i
and volumetric models to perform different levels of matching

3.2. Approaches Using a Priori Shape Models Table 1 lists the researchers and the human models used in |
research.

feature points
in head

Right shoulder

O

D Left knee Right knee®

Right ankl(b

Although motion recovery without the use ofapriori shape
model is highly desirable, it introduces additional complexity to
the tracking procedure. Sometimes, difficulties in feature corre-
spondence cannot be overcome without usirgriori knowl-
edge of the object shape. Everyday experience indicates tha
human beings usually “see” an object by comparing it to prior
knowledge of similar objects in the memory. Therefore, model-
based approaches come up naturally. Since most of the previou
work in this area has dealt with human body movements, we
restrict our review to the human form as the object of study.

In the rest of this subsection, we will first discuss various
models of the human body and the analysis of human motion.
Then, we will address the high-level procedures such as body
matching, part recognition, and 3D structure determination.

3.2.1. Human Model Definitions

Conventionally, the human body is represented either by a
stick figure (Fig. 3) or a volumetric model (Fig. 4). The stick
figure representation [2, 12, 21] is based on the observation tha
human motion is essentially the movement of the human skele-
ton brought about by the attached muscles. Volumetric modeig; 4. A volumetric (cylinder) human body model (viewed from two direc-
(such as 2D ribbons [58], generalized cones [2], elliptical cyliniens), derived from Hogg [14].
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TABLE 1 O’Rourke and Badler [71] use an elaborate sphere model cc
Researchers and Their Human Models sisting of 24 rigid segments and 25 joints. The surface of ea
segment is defined by a collection of overlapping sphere prin
itives. A coordinate system is embedded in the segments. T
Researcher's name Stick figure Volumetric model  model also includes the constraints of human motion, such
restrictions on joint angles, and an algorithm to detect collisior

Human model

(H)Ozgurke and Badler y Zﬁi:)?i::eal cylinder between nonadjacent segments.

Akita v / cone Recent work by Goncalvest al.[35] addressed the problem
Chen and Lee v of motion estimation of a human arm in 3D using a calibrate
Okawa and Hanatani +/ 2D mask camera. Both the upper and lower arm are modeled as trunca
l?n”;:foa al. \\; gg :‘;Zf:n circular cones, and the shoulder and elbow joints are assumec
Leung and Yang +/ 2D ribbon be spherical Jomts. The hand tip is considered to be an extensi
Rohr y/ elliptical cylinder of the forearm axis.

Bharatkumaet al.
Perales and Torres

As mentioned previously, both stick figures and volumetri
+/ various 3D primitives models can be integrated to form a more comprehensive syst
for coarse-to-fine processing. In Akita’s work [2], key frames o
2D stick figures are used to guide the approximate order of tl
notion and spatial relationships between the body parts. The
E;/ frames represent the crucial moment of a changing po:s

u

L

Chen and Lee’s 3D stick figure model [21] contains 17 se
ments and 14 joints for the head, torso, hip, arms, and legs. B
torso and hip parts are assumed to be rigid. The whole sti
figure model is described with the 3D space of the joints a the placgwhere thelbodysegme.nts Cross oruncross each O.t
the length of each rigid segment. The identification of a pose e stick figure has six segments: head (close to a single poir

human motion in this model involves the joint location in 3Orso, two arms, and two legs. No joint is explicitly defined. A

coordinates and the 3D joint angle measurements. Bharatkurﬁ%'?e model is included to provide knowledge of the rough shay

et al. [12] use a 2D stick figure to model the lower limb of the body parts. Each part corresponds to the counterpart

the human body, where joints such as hip, knee, and ankle H}% stick figure model. Recent work by Perales and Torres [7
considered ' ' ’ introduces a predefined library with two levels of biomechanic

A large body of literature concerns the shape recognition %’fagh';al modelst. Levdel Onef IS _a_silckLﬂgulreTtree_ with node
2D contours of human parts, especially for lower limbs. The 2 r body segments and arcs for Joints. LEVel Two IS Compose

features vary from the lower level masks [70] and meshes [10 ,descrlptlons of surface and body segments constructed w

to higher level regions [52] and ribbon representations [5 _rious 3D primitives used in computer graphics. Both levels ¢
model are applied in different matching stages.

Among them, the 2D ribbon model proposed by Leung and Ya . :
[58] is the most complicated. It contains two components: the"; cont;ast,h Kuchethal.d[55]_bund s. geBnenI(_: moslel ofdthleﬂ
basic body model and the extended body model. The basic pGyyrace of a human hand using cubic B-splin€s 10 mode

model outlines the structural and shape relationships betweend gace of the hand. Their model consists of 300 control poin

body parts. Several rules are imposed along with the struct ) renderl'ng Into a smgothed surfacg. Any given hands c:
| pproximated by adjusting the variations of these contr

such as structural constraints, shape constraints, and balan S )
g@ ts based on the calibration results from three camera viev

s, each frame differs from its predecessor and succes:

constraints, to ease the body labeling process. The exten . i ; o
y gp focus of their work is on modeling and then rendering |

model consists of three patterns: the support posture model, . . )
P pportp real human hands. Tracking of human hands is achieved

side view kneeling model, and side horse motion model. It at=, ;=" ", :
nimizing the error between the real hand image and the moc

tempts to resolve ambiguities in the interpretation process H}} L . L ) .
identifying a certain pattern from the outlined picture. projection based on the assumption that the initial orientation

A collection of elliptical cylinders is also commonly used ithe hand is available.

modeling nonrigid forms. The models in both Hogg [39] and

Rohr [84] fall into this category; more specifically, they are thg 2.2. Articulated Motion Models

cylinder models originated by Marr and Nishihara [61]. In this

model, the human body is described by 14 elliptical cylinders. A substantial amount of research on articulated motion hs
Each cylinder is controlled by three parameters: the length of theen focused on human motion. Human motion can be descrik
axis, and the major and minor axes of the ellipse cross sectiomterms of kinetics or kinematics. Kinetics involves the study o
The origin of the coordinate system is located at the centertbk forces/torques involved in generating the movements. Kin
the torso. Along the same vein, Rebgal. [83] rendered two matics, on the other hand, concerns the geometry of the obje
occluded fingers with several cylinders, and the center axessofth as its position, orientation, and deformation. Most of th
the cylinders are projected into the center line segments of tmedel-based approaches in computer vision are concerned w
2D finger images. studies of the kinematic patterns.
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In kinematics, human motion is usually characterized by joiatmeaningful description of the human motion and structure ci
angles and the horizontal/vertical displacements of joints, ks obtained.
initiated in medical studies by Murray [66]. Along this vein, Leung and Yang [58] applied thafferent picturemethod of
Rohr [84] describes human walking with the joint angles of th#ain and Nagel [45] along with their own coincidence edge di
hip, knee, shoulder, and elbow within a walking cycle. In higection algorithm to generate a complete outline of the movir
experiments, raw kinematic data are interpolated by periodibject images. They proposed a spatiotemporal relaxation p
cubic splines to create smoothed patterns. Among the motiorcess to determine which side of the moving edge belongs to t
different body parts, the movement of the lower limbs has beeroving object. Two sets of 2D ribbons on each side of the mo
extensively studies in the past [12, 52, 69, 101]. Compareditay edge, either a part of the body or that of the background, &
the upper trunk and arms, the lower limbs usually move moidentified according to their shape changes over time. The bo
regularly and maintain their shapes in a more consistent fashiparts are labeled according to the human body model. Then
This is indeed the reason why the prototyped hidden Markadescription of the body parts and the appropriate body join
model (HMM) succeeds in recognition of human activities irs obtained. 2D human stick figures are produced as the fir
an image sequence based on simple mesh symbols [101]oltput.
[12], Bharatkumaet al. [12] used kinesiology data as the basis In Akita’'s work [2], the first step is to obtain the outline image
for their walking human model. They measure the projected 2iy an edge detector and set the viewer’s space coordinate sys
angles of the hip and the knee for one walking cycle and fit theim each frame. According to the stability of the different body
with cubic splines as the model data. Horizontal displacemeprts, the labeling process is executed in the order of legs, he
of the hip and ankle is also used as a part of the model. A highms, and trunk. Two methods are combined to establish t
correlation has been found between the model and the stakrespondence between frames regarding the degree of b
figure of a subject using medial axis transformation. Similarlypnovement. If the change of the body segments is smallythe
Kinzel [52] employs the hip and knee angles for modeling limbdow codealistance is used to locate the body parts, incorporat
movements. In contrast, Niyogi and Adelson’s [69] exploit theith their position in previous frames. Otherwise, the key stic
repetition information of the lower limb trajectory for coarsdrames are applied for dramatic changes of the posture due
recognition of a human walking. They assume that the humaaoclusion.
is walking at a roughly constant speed and parallel to the imageRecently, Goncalves [35] used perspective projection of a
plane, thus no depth information is considered. An XT-slicerm model to fit the blurred image of areal arm. Matching is cor
(x axis vs time) of the cube near the ankle is used as a braidieted by recursively minimizing the error between the mod
signature for walking patterns. The XT-slice of the head showsojection and the real image by dynamically adapting the si:
a nearly straight line in an image sequence. These XT-slicasd orientation of the model. Rehg [83] apply a similar approac
are utilized to outline the contour of a walking human basezkcept that thevindow functiorwas adopted to exclude the ef-
on the observation that the human body is spatially contiguotiscts of occlusion and locate the templates of finger images
A reliable stick figure of the human body is extracted from thiee matched.
outline images. The corresponding gait was found and compared
to the patterns in the database. Finally, the walking human3g2.4. 3D Structure Determination
recqgmzeq from his gait s!gnature. . . . Since 3D structure reconstruction that depends solely on t

Kinematic models of articulated motion also help in trackmg

. . . nalysis of real image data is extremely difficult and unreliabls
_self-occludlng articulated objects. Rebgal. [83] assume_d an ot approaches [21, 39, 77, 84] establish a match between

L ) %Drealimage and the 3D graphical model. Once the relationst
to the viewing camera. The hand is assumed to rotate al

. . . X Detween the graphical and the real image data is discover
the middle finger axis, thus there are three possible OCCIUS'8He can directly employ the noise-free synthetic model data
relations: the second finger occluded by the first, disjoint, a@ﬂnplify higher level tasks [71]

the first occluded by the second. The definition of this kinemat|cChen and Lee [21] attempted to recover the 3D configuratic

motion model simplifies the motion predictipn an(_j m_atchingki moving subject according to its projected 2D image. A set «
process between the 3D shape model and its projection in sible interpretations in 3D stick figures is obtained from tt

image plane. basic analysis of the gait. To eliminate a great number of false s
lutions, they propose a computational model using graph seal
theory. The search space is constrained by the smoothness

Recognition of body parts is essential for high-level processesntinuity of human motion. Physical constraints, such as anc
such as segmentation, tracking, and object recognition. It usenstraints, distance constraints, and collision-free constrain
ally involves region tracking and body labeling. Region trackingre imposed to exclude invalid matches. The transformation rr
comprises extracting the shape primitive of the subject and dex from the body coordinate system to the viewer's coordi
termining its location from frame to frame. The labeling procesgate system is constructed using the specific six feature poi
matches the body parts to their counterparts in the model, so timathe head. Then, the locations of the joints in the model a

3.2.3. Part Location
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transformed into the viewer's coordinates. Finally, the 3D struperation of shape models significantly reduces the search sp:
ture of the whole body is recovered. in the feature matching process. In some cases, the corresp
Hogg [39] presented a computer program called the WALKE&ence problem is transformed to a parameter estimation prc
which attempts to “see” a walking person. The system is maltden. Using physically based modeling primitives has the adde
up of three phases. First, the raw images sequence is inputitivantage of resolving the 3D shape reconstruction proble
a differencing algorithm to produce an isolated region of thesually encountered in nonrigid motion analysis. These met
moving object. The region including the moving object servexls are most effective whenpriori knowledge about the mo-
as an indication of the object’s size, location, and rough postutien structure is available. If the motion characteristics are n
Next, the outline of the gray-scaled object is extracted using tkeown in advance, applying such methods could cause errors
Sobel operator and a fixed threshold. Then, an exhaustive seangdtion estimation as well as in shape recovery. In such cas
is performed to find the corresponding posture of the modabproaches that assume no prior knowledge about the motior
that is the best match of the current image. The matching pabject structure can be utilized to determine the general pro
cess is implemented by maximizing the plausibility value usingrties of the nonrigid motion; then proper modeling primitive:
a pixel-by-pixel Least Mean Squares (LMS) fitting. Finally, thean be selected to refine or enhance the analysis. Thus, in sc
description of the 3D structure for the walking person is genesense, these two general approaches can be integrated to yie
ated. Rohr’s work [84] is quite similar to Hogg's, except for thenore reliable scheme for analyzing general nonrigid motion.
method of mapping the gray-scaled image to the corresponding
model. After the outline of the moving object is extracted, Rohr

applied the eigenvector line fitting [29] to approximate the edges|n this subsection, we discuss motion recovery strategies ba:
of the image. Then, a similarity measure is calculated to locaifi the most general assumptions of elastic motion, i.e., coh
the proper model. A recent study by Perales [77] follows a simince of bodies and smoothness of motion. Since no expli
lar strategy, except that they define the modelin a more elaborg@pe models are used, one must rely on image features to tr
way according to the input image and the user’s assignmentthe nonrigid motion. The analysis usually consists of three maj

In O'Rourke and Badler’s experiments [71], the images wekgages: (1) feature extraction, (2) feature correspondence, and
taken from a computer-controlled human model. The segmeR{gtion and structure recovery. The overall scheme appears v
of the head, hands, and feet were lightly colored to presensigilar to that used by stereo vision or rigid motion estimatior

sort ofmoving light displayPredicted 3D regions correspondonetheless, we will see remarkable differences in each sta
ing to various body parts are fed into tlleage analysiphase of processing as we proceed.

to produce a more accurate location. After the range of the pre-
dicted 3D location of the body parts becomes smalleptireer 4.1.1. Feature Extraction
fits these location—time relationships into certain linear func-

tions. Then, theredictionphase estimates the position of th%sually the primary step in recovering structure from motior

parts n the futu_re frame based on th_e determ|_ned linear furl‘fﬁlike situations in which the rigidity assumption is valid, wher
tions. Finally, asimulatorembedded W.'th. extenS|ye knowledged formation is allowed, there usually are no image features tr
pfthe hume}n body tr.ansla_testhe pr.e.dlcnon datamto corres_poggér reliable structural and geometrical information about tt
N9 3D. regions, which will be verified by thienage analysis objects. This significantly limits the type of matching primitives
phase in the next loop. that can be used to analyze nonrigid motion. In general, tw
4. ELASTIC MOTION levels of features have been employed, i.e., low-level featur
such as points and high-level features such as contours.

Elastic motion refers to the type of nonrigid motion whose Point features are widely used, not only because they are u:
only constraint is some degree of continuity or smoothness.afy the only type of features found in many biomedical images
this domain of general deformable motion, there are no cooudt also because they are invariant with respect to deformal
straints other than topological invariance. Most approaches tir@nsformations. Since point features are a fairly low-level repre
deal withelasticmotion assume an object model and then try teentation, the accuracy of the matching results depends hea
model the deformations as variations to the model parametears.the validity of the motion smoothness assumption. In oth

A notable example of elastic motion is the motion of the heantords, large deformations cannot be properly addressed.
(specifically, the left ventricle). Much of the research on elas- The contour of a 2D object or the bounding surface of a 3l
tic motion has concentrated on the analysis of left ventriculabject are classified as high-level features. These representati
motion, due to its importance in aiding the understanding of tipeovide richer information than edges or collections of points
physiology of the normal heart and detection of cardiovascul@herefore, in establishing the correspondence between conto
diseases. (2D data) or surfaces (3D data), assumptions such as local rig
In general, model-based approaches have the advantagéyadr small interframe motion can be somewhat relaxed. In add
constraining the degrees of freedom exhibited by the deformaliten, since the contour contains structural information about tf
objects. The correspondence problem is simplified as the incobject, one expects the matching results to be more robust th

4.1. Motion Recovery without a Priori Shape Models

Establishing the correspondence between image features
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those obtained from low-level feature matching. A major proland motion analysis. The correspondence problem is cast int
lem, however, is that the extraction of reliable contours/surfacieir-dimensional maximum weighted matching problem, whic
from a sequence of nonrigid shapes is itself a difficult problerhelongs to the class of NP-complete problems. To get arou
especially in biomedical images that exhibit poor contrast. NP-completeness, they use a relaxation labeling technique
such cases, incorporation of parametrically deformable modeléectively reduce the number of possible matches, and then
may assist the task of boundary detection [90]. ply a local search algorithm that returns a near-optimal solutic
to the modified problem. The approach is applicable to genel
feature types. Experimental results on real images of a frog
There are two general approaches for feature correspondevestricle usingpoint features are demonstrated.
in nonrigid motion analysisxplicitandimplicit matching meth- o ) )
ods. In explicit matching, the finite set of image features ex- EXplicit, high-level feature matching.In [9], Bajcsy and
tracted from image sequences are examined and comparef@9¥acic proposed a multiresolution elastic matching algoritht
arrive at one-to-one mappings based on certain likelihood mé@t medical applications. Contours of the brain atlas and the C
sures. In implicit matching, distinct features are not isolatetComputerized Tomography) brain from three different scale
Instead, an energy functional incorporating internal forces (e.§€¢ matched in a coarse-to-fine manner. After proper regist
smoothness constraint) and external forces (e.g., feature eneH§}f), matching starts at the coarsest level and the result is pre
is formulated and the feature tracking problem is converted to @gated through the next finer level. The finest level solution
optimization problem. In the following, we discuss strategies fépen used to incrementally deform the model using an elas
matching low-level and high-level features using explicit matctfonstraint equation. This procedure continues until a satisfe
ing methods. We also touch upon the topic of implicit, low-levdPry match is found. Itis shown that by integrating informatior
feature matching. Implicit, high-level matching is closely refrom different sca]es,_robustness is achieved and the restricti
lated to physically based shape models and will be treateddhsmall deformation is alleviated.
latter subsections. Amini et al.[4] computed the displacement vectors betwee
o ] ) two successive contours using a two-stage process. The f
Explicit, low-level feature matching.Strickland and Mao giage involves the initial estimation of the displacement vecto
[93] developed a relaxation algorithm to compute corréspogy modeling the contour as an elastic rod and minimizing tt
dence inimage sequences containing nonrigid shapes. A spegia|ding energy. In the second stage, a smooth vector flow fielc
representation scheme consisting of a network of nodes c@ained by refining the initial displacement vectors based on ¢
nected by branches is used to describe the edge map. Critigler energy function. In [5, 6], the method is extended to allo
points, such as branching points and corners, are selected as ggfz ce tracking of nonrigid objects undergoing conformal m
didates of matching primitives. These points are matched usifg,
an iterative relaxation procedure, where the matching probabil-cohenet al. [23] presented a method to track points on de
ity is updated according to the similarity between the geometRyymaple contours using curvature information. High curve
of neighboring nodes, the averaged motion vector, and the relg- points on the contour are used as landmarks to guide
tive location of neighbors with respect to the current node. Ev%tching process. Assuming that the boundaries have been s
though all the above constraints favor local rigidity, the partic%—essfu”y extracted, they formulate an energy functional whic
lar image structure permits global deformation between imaﬁ?eserves the matching between high curvature points while ¢
sequences. This tec_:hni_que has been applied to track fluid ﬂQM‘ﬁng smooth flow field everywhere. This approach appears
features in combustion image sequences [92]. be very similar to [6], except that an explicit description of the
Shapiroet al. [87] presented a parallel strategy for trackinggnappmg between the contours to be matched is provided.
corner features on independently moving (and possibly non- gerra and Berthod [86] introduced an algorithm for optime
rigid) objects. Their system consists of two componenteas  gppixel matching of contour chains and segments. The alc
cherand atracker. The matcher computes the corresponden¢gnm relies only on the geometrical properties of the contour
based on local patch correlation, while the tracker supervises g’ﬁninating the need for parametrization of the deformatior
matcher over time, maintaining the motion trajectory as well ¢ contour is treated as a collection of small linear segmer
feeding the predictions to the matcher. The key assumptiondintour matching is achieved by minimizingdeformation

this work, however, is that the displacement between two imagg asurdetween the linear segments using a dynamic prograi
frames is small, which is a severe restriction in many appllc%ﬁng framework.

tions. Moreovercornerfeatures might not be present in many

practical situations, and other reliable means to extract physiimplicit, low-level feature matching.In implicit matching,

cally meaningful points have to be utilized. extraction of feature sets is not required. Instead, matching
Liao et al. [59] have addressed the analysis of three-dimeaecomplished on a global basis, where a one-to-one relations

sional shape and shape change in nonrigid biological objebttween local features might not exist or is unimportant. A cla

imaged via a stereo light microscope. They proposed a coopsic example of this type of matching strategy is the computatic

ative spatial and temporal feature matching process for ste@ptical flow by Horn [40]. Due to its sensitivity to occlusions,

4.1.2. Feature Correspondence
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discontinuities, and noise, however, this method has shown otitg dual role of assisting motion estimation as well as structu
limited success in practical situations. recovery. Using deformable models, the seemingly unstructur:

Bartelset al. [10] introduced the concept of material coordielastic motion can be compactly represented by a small nur
nates in modeling shape changes in microscopic images. Even of parameters. The task of motion recovery is often reduc
though the basic assumption that brightness does not chatgéhe problem of parameter estimation. In this subsection, v
too much between image frames is similar to that in optical flowill discuss two classes of shape modeling primitiyEramet-
analysis, their algorithm seeks a deformation transformation brfe&e models angbhysically basednodels. Parametric models are
tween the material coordinates rather than computing the flewitable for describing the shape of static objects and, with prop
vector explicitly. Concepts from differential geometry are apnodification, can also be used to model deformable surface
plied to assist the analysis. The variational technique employHysically based models are fundamentally dynamic and &
to optimize the energy functional, however, yields complicategbverned by the laws of rigid and nonrigid dynamics expresse
nonlinear, second-order, coupled partial differential equatiorterough a set of Lagrangian equations of motion. They are mo
Convergence of the numerical solution is thus an issue of carersatile in terms of modeling complex local deformations.
cern.

Kambhamettu and Goldgof [49] studied the recovery of poidt2.1. Parametric Models

correspondence inomotheticandconformalmotion—two re- A nymper of parametric surface models have been propos
stricted classes of nonrigid motion [50]. In these classes of cq@; geometric shape representation. Parametric models concis
fined nonrigid motion, there is a mapping relating the Gaus&@gpture the global shape of the objects, which sometimes ir
curvatures of the surface at corresponding points. By hypothesr'm-eS that heuristica priori knowledge about the object must
ing all possible point correspondences in a small neighborhoggd provided. Consequently, most parametric models are able
and minimizing the error.function which captures the _deViati%present only a limited class of objects and are not well suit
from the underlying motion class for each hypothesis, localy model dynamically deformable objects without proper modi

consistent matches between points are obtained. Once the pgikion. 1n the following, we briefly discuss these representatic
correspondence is recovered, stretching parameters can be gsfiames and comment on their usage and limitations in deall

mated. _ _ . ~ with nonrigid shapes.
Chaudhuri and Chatterjee [18] established implicit point cor-

respondence by means of subset matching. Subsets are createglynomials. Polynomials have been extensively used be
by grouping points lying on a single surface. Thus, the corrgause of their simplicity [11]. Spheres, cylinders, and cones a
spondence problem is reduced to identifying the same surfagsme simple second degree surfaces that are commonly usec
at different time intervals. The results of matching are used fost cases, these simplified shape primitives are very coarse
compute translation, rotation, and deformation parameters ffactions and can, at best, provide some qualitative measure
nonrigid objects. the visual data. For a discussion of dynamic shape representat
Huttenlocheet al.[43] addressed the tracking of nonrigid obusing polynomials, the reader is referred to [53].

jectsin complex scenes. They decompose the image of a moving

object into two components: 2D shape change and 2D motionGeneralized cylinders. Generalized cylinders [79] are con-
The 2D shape is represented by a collection of points. Correspstiucted by sweeping an arbitrary two-dimensional set along
dence between shapes is achieved by comparing the Hauscadfitrary axisa(s), called thesping in 3D space. They can repre-

distance between two group of points. sent either a solid or a surface. Many parameters such as surf
area or volume can be easily computed from this representatic
4.1.3. Motion and Structure Recovery However, determining the axe{s) and fitting the visual data

. . - 10 the model are nontrivial tasks, especially when deformatic
Motion recovery without the explicit use of shape mOdeISfalt)%_the object shape s likely to happen. They are better st

to address the important problem of structure modeling. ESti deli Dl tic sh th lex. d
lishing explicit correspondence between image features o8 jer:?:(t)s €ling simple geometric shapes thah complex, dyham

gives flow vectors at certain locations. Interpolation techniqu
must be applied to obtain a dense map [93]. Implicit pointmatch- gy arical harmonics. Spherical harmonic functions are a

ing algorithms produce denser optical flow fields, but the resugﬁmplete, orthogonal set of functions on the sphere under t
are usually noisy and necessitate some smoothing process.“g?]tér product

the whole, additional processing is required to reconstruct the
motion transformation of the entire body. Unfortunately, this (fy, fa) :/ f1f2sing de dé. (1)
crucial issue has been largely ignored by most researchers.
4.2. Model-Based Approaches Thergfore, any radial or sFeIIar gurfape (surfaqe optaingd by d
forming a sphere by moving points in the radial direction) ca
In nonrigid motion analysis, dynamic shape modeling prdse represented by a sum of these basis functifff&, 6) and
vides the mechanism for fitting and tracking visual data. It play&(¢, 6)
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N n Implicit algebraic surfaces. An implicit surfaceSis defined
R(®.6) =" AmUl($.0) + BunVi'(¢.6).  (2) as the zero set of some functidn
n=0 m=0

S={x]fX) =0}, x=(xy.2". (4)

Because of its ability to capture the details of local surface patch,
the spherical harmonic function has been used by Giterd. In [94], Sullivanet al. used the parameterized algebraic surfac:
[19] as a surface modeling primitive for interpolating the localefined by
deformation of the left ventricle.

Splines. Splines have been widely used in computer-aided F(x, p)= X_; pix7y1z7 =0 )
geometrical design and computer graphics since the early 1960's. =
Recently, they have found their way into modeling and data mr 3-D object modeling and recognition. The parameter vectc
duction applications in computer vision [96]. In fact, tieake p = (p,,..., pqy) is estimated from the visual data by mini-
model we will discuss later reduces to a spline function Wheﬁizing the mean-squared algebraic distance between the mo
external forces are removed. (We will present a detailed discigid the observed points. According to their definition, a quadri
sion on the snake model in the next section, due to its stroggrface will possess a total of 34 coefficients and can be ust
influence on the study of nonrigid shapes.) In a series of papes$nodel fairly complex shapes. (In comparison, a superquadr
[14-16], Bookstein illustrated the potential applications of thirsurface, which is an implicit surface, but not an algebraic surfac
plate splines, including the modeling of biological shape changgas only 5 parameters.) Motion and deformation of the objec
production of biomedical atlases, and image feature extractigfmodeled by an affine transformation between two algebra
He demonstrated the decomposition of deformationgtty-  surfaces in that it preserves the surface degree.
cipal warps which are geometrically independent, affine-free . . ,
deformations of progressively smaller scales. Such a decompofeurier decomposition. Staib and Ducan [90] proposed a

sition scheme is conceptually similar to conventional orthogorirametrically deformable model for boundary finding base:
functional analysis. on the elliptic Fourier decomposition of a contour

Superquadrics. Another class of modeling primitives that [X(t)] — [30} i [ak bk} [CQSkt] (6)
has received much attention recently is superquadrics, a family y(t) Co — | C dg || sinkt

of parametric shapes derived from the parametric forms of the ]

quadric surfaces. Solina and Bajcsy [89] discussed the recovéRg Parameter vector to be recovereg is: (a, Co, &, by, €1,

of parametric models from range images using superquadr%s~ ..). The strength of their model stems from the combina:

with global deformations. Mathematically, the equation for tion of flexible constraints in the form of probabilistic models.
superquadric surface is given as Boundary detection is formulated as an estimation problem u:

ing a MaximumA Posteriori(MAP) objective function. In [91],

2,C4 (1)< (w) the 2D model is extended to allow global shape parametrizatic

e(1. ) =| a,Ce () T of smoothly deformable 3D objects. Surface detection is for
T G ('72 (@) | 2 ~1=% mulated as an optimization problem, although no probabilisti
asS"(n) model is involved. Deng and Wilson [28] also used a Fourie

—nT <w<=Im, (3) descriptor to represent the global shape of an object, but the

allow local forces to interact with the global boundary so tha

where C¢(y) =sgr(cosn)|cos@)|¢ and S (i) = sgr(sinn) local deformation is permissible.

|sin(n)|¢. The variableg) andw correspond to latitude and lon-
gitude in a spherical coordinate systee, ¢, are known as
squarenesparameters and,, a;, andas are scaling factors. As we have mentioned previously, parametric models ar
By varying these five parameters, a variety of shapes canibadequate for the analysis and representation of comple
obtained. While superquadrics are capable of modeling glolaginamic real-world objects. This deficiency is apparent in the
shapes, they usually cannot give accurate descriptions of nataase of nonrigid motion, and has motivated recent research in
objects. Later, we will discuss how global deformations (bendiodeling methods based on computational physics. Anumber
ing, tapering, twisting, and concavity) and local deformatiorghysically based models have been developed for image ana
can be incorporated to enhance the modeling capabilities of sis, includingsnakessymmetry-seeking models, deformable su-
perquadric surfaces. Hyperquadrics [37] are generalizationspeirquadrics, deformable templates, and modal models.
superquadrics that allow smooth deformation from shapes withThesnakemodel is perhaps the most well known and widely
convex polyhedral bounds, although no explicit parameterizaded physically based model. A great deal of attention has be
form is possible. devoted to the extension of the named prototype first propose

4.2.2. Physically Based Models
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by Kasset al.[51]. The original snake model is a class of activenodel the geometry and deformation of the LV. Verification o
contours that evolve under the influence of external potentigke proposed algorithms is achieved using a silicon gel phantc
but are constrained by internal energies. When augmentedungdergoing controlled deformation.
Lagrangian mechanics, dynamic snakes with intuitive physicalThe semi-automatic tag tracking algorithm proposed b
behaviors are developed [97]. In [32], temporal context is exphdraitchmanet al. [54] represents a combination of template
citly incorporated to form a spatiotemporal solid calledahtve matching and active contour modeling. Tag intersections a
tube Not surprising, the snake model can also be generalizedirst detected by computing the normalized cross-correlatic
deal with 3D images, as shown by Cohadral.in [24, 25]. This between an idealized template and the tagged MR image. /
newly formed class of deformable surfaces, cabbatioons is “active spring mesh” structure is then formulated to track th
able to conform to image features and external forces in a wiggntified intersection points. The spring mesh has a differe
similar to the original snake model. An evolution equation simnternal energy from the original snake model since discre!
ilar to that in dynamisnakedas also been formulated. Coherpoints, rather than lines or contours are being tracked. The ir
et al. have successfully applied this model to the segmentatiage energy is chosen to be the correlation image to attract t
of 3D MRI images as well as to establishing correspondence litersection points to regions of high correlation.
tween a deformable surface and an anatomical atlas. Mclnerney.obregt and Viergever [60] presentediacretedynamic con-
et al.[62] have addressed similar problems using a slightly difeur model with special properties to avoid undesirable effec
ferent balloon model. Their focus, however, is on the numericalich as shrinking and vertex clustering, which are common pro
solution of the dynamic deformable surface model. lems in existing active contour models. The internal energy ¢
A more recent extension tmakemodels can be found in [95], the model depends on local contour curvature, while the exterr
where the essential elements of physically based models amérgy is derived from image features. The resulting model
probabilistic approaches are incorporated. A Bayesian fran@sth conceptually and computationally simple, and has prove
work is introduced and the original energy-minimizing problerto be useful for segmenting Ml images. Extension of their mett
is transformed to an MAP problem. To further exploit the powerds to 3D images, however, remains an open question.
of probabilistic modeling, Szeliskit al.[95] have developed a The free-form deformable surface model proposed b
sequential estimation algorithm using the Kalman filter. KnowBelingetteet al. [26, 27] is conceptually similar to the active
as theKalman snakgthis dynamic system is able to integrateeontour model [51]. They model an object as a closed surfa
nonstationary, noisy observations over time. It provides the flehat is deformed subject to attractive fields generated by inp
ibility to design behaviors that may not be possible with purelyata points and features. A fundamental conflict in shape rep
physically based models. Moreover, model parameters candaatation is that a modeling primitive should be general enou
derived from statistical models of sensors, rather than chogerthandle awide variety of scenes, yet simple enough to be usa
heuristically. It would be useful to generalize their developmefur tasks such as recognition and manipulation. To balance the
to form Kalman balloonghat are capable of tracking dynamiaconflicting requirements, the authors suggested a coarse/fine
surfaces. proach where features affect the global shape while data poit
A significant amount of work in left ventricle (LV) boundarycontrol its local shape.
detectionitracking has been influenced by tsregakemodel. For Deformable templates, such as those employed by Yuil
example, Ranganath [81] developed an automatic contour exal.[104] to extract facial features, mark a blend of parametri
traction procedure using a specially configured active conta@presentation and physical-based methods. The template is
model. Contour propagation between image slices (spatial cagribed by a parametrized geometrical model. The goodness
tinuity) and image phases (temporal continuity) is consideredfibbetween the deformable model and the image is measured
enhance the reliability of the extracted boundaries. the interaction energy, which contains contributions from var
Kumar and Goldgof [56] also based their feature-trackingus image features. Optimal fit is obtained when the energy
algorithm on snake models. Spatiotemporal tracking of tmeinimized. In [36], the authors improved the original model by
SPAMM grid in cardiac MR images is achieved by using multidesigning a more sophisticated cost functional.
ple parallel and vertical snakes. The intersections of snakes ar®eformable superquadrics [98] are dynamic surface mo
used as markers for establishing point correspondences. Aftés with global and local deformation properties inherited fron
the correspondence problem is solved, a thin-plate spline modeperquadric ellipsoids and membrane splines. The combin
is utilized to interpolate the local motion vectors. local/global representation is aimed at solving the conflictin
Along a similar vein, Younget al. [102, 103] proposed de- goals of shape reconstruction and recognition we addressed ¢
formable models to reconstruct 2-D and 3-D heart wall motidrer. Additional deformational degrees of freedom are gaine
from tagged MR images. Their approach appears to be very sifmom the incorporation of global deformation such as tapering
ilar to that reported by Kumar and Goldgof, except that the lattewristing, and bending [63]. By casting the fitting of time-varying
used modified internal and image energies, while Yoehgl. visual dataintothe Lagrangian mechanical framework, the equ
used the original snake formulation and minimization procedutiens of motion governing the behavior of the deformable st
developed by Kasst al. Finite element method is employed toperquadrics can be developed. When augmented by Kalm
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filter theory [64], the dynamic system becomes a recursive shadyetion tracking assuming na priori knowledge about the mo-
and motion estimator which employs the Lagrange equatition or object shape is necessary when dealing with an unkno
of dynamic surfaces as a system model. In [65], deformaldéject. The difficulty of establishing feature correspondence
superquadrics that combine Kalman filter with additional coithe major obstacle to this type of approach. Researchers eit
straints are employed to track articulated objects. focus on high level processing, assuming that matching is kno

Inspired by modal analysis in linear mechanical systeme,priori, or impose constraints on the object’'s behavior to ge
Pentland [74] developed a system that is capable of automateund the problem. Model-based approaches, which have
ically recovering deformable part models based on the finitglvantage of knowing the approximate object shapesin advan
element method (FEM). Nonrigid object behavior is describesimplify this problem or transform it into other tractable issues
by modal dynamics.e., by the superposition of its natural strairHowever, these methods are not applicable if knowledge of t
or vibration modes. By limiting the number of modes used iabject shape is not available.
the representation, the analysis of nonrigid motion can alwaysCertain success has been achieved in the study of the hun
be transformed to an overconstrained problem. Later, the sagaét and the analysis of left ventricular motion using variou
model combined with an extended Kalman filter is applied image analysis techniques, as described in this paper. Over
recover nonrigid motion and structure from contour [76] as wehlonrigid motion analysis is still in its infancy. However, many
as optical flow data [75]. A major limitation of the modal frameinvestigators have realized the importance of dealing with no
work is that objects must be described in term of the modesrajidity in motion analysis. The applications of nonrigid motion
some prototype shape. Such a procedure implicitly imposesamalysis extend from teleconferencing, gesture recognition, fa
a priori parameterization upon the sensor data. It is thus maexognition, material deformation studies, biomedical applic:
suitable fomodelingthan fortrackingpurposes. To address thistions, and geological formation studies to weather prediction al
problem, Sclaroff and Pentland [85] recently developed a némage compression. We expect novel schemes will be presen
method that computes the object’s vibration modes directly froto deal with different types of nonrigid motion in the future.
the image data.
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