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Motion of physical objects in the world is, in general, nonrigid. In
robotics and computer vision, the motion of nonrigid objects is of
growing interest to researchers from a wide spectrum of disciplines.
The nonrigid objects being studied may be generally categorized
into three groups according to the degree of deformation of body
parts: articulated, elastic, and fluid. In articulated motion, individ-
ual rigid parts of an object move independently of one another and
the motion of the whole object is nonrigid in nature. Elastic motion
is nonrigid motion that conforms to a certain degree of continuity or
smoothness. Fluid motion violates even the continuity assumption
and may involve topological variations and turbulent deformations.
This paper presents an overview of existing work on articulated and
elastic motion, motivated by problems relating to the motion of the
human body and of an animal heart, respectively. We study various
approaches for recovering the 3D structure and motion of objects
through a sequence of images in a bottom-up fashion, a strategy
widely employed by various investigators. These approaches are
classified as (1) motion recovery without shape models, and (2)
model-based analysis. In the discussion of each algorithm, we also
include a description of the complexity of feature and motion con-
straints, which are highly related to each other. c© 1998 Academic Press

1. INTRODUCTION

In computer vision research, motion analysis has been largely
restricted to the study of the motion of rigid objects. However, in
the real world, nonrigid motion of objects is far more common.
Driven by a wide range of applications such as medical imaging,
sports training, image compression, graphics animation, video
conferencing, and content-based query of multimedia databases,
there is a growing interest in the study of nonrigid motion.

Nonrigid motion may be generally classified into three groups
[41] according to the degree of deformation of body parts: the
motion of rigid parts, the motion of coherent objects, and the mo-
tion of fluids. Motion of rigid parts occurs in situations where
the individual rigid parts of an object move independently of one
another. In this case, the motion of each constituent part is rigid,
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but the motion of the whole object is nonrigid. This type of mo-
tion is known asarticulatedmotion. On the other hand, nonrigid
motion of coherent objects includes motions such as the beating
of a heart, the waving of a cloth, or the bending of a metal sheet,
where the shape of the object deforms within certain continuity
constraints. This type of nonrigid motion is classified aselas-
tic motion. In this paper, we consider these two specific types
of motion. Our study is motivated by problems encountered in
computer vision studies of the human gait and the motion of the
human body as well as the motion of an animal heart, where
the constraints are related to continuity and smoothness. In both
cases, it is of considerable importance to characterize both the
structure and motion of the studied object. The motion of fluids
is not considered in this paper.

The analysis of articulated motion, especially human motion,
has been motivated by a large number of applications. For in-
stance, automatic tracking of human motion using cameras can
be applied to surveillance and traffic monitoring. If we process
the motion analysis further to gait level and recover the 3D struc-
tures of articulated objects, it may be useful to applications such
as (1) kinematic analysis of the movements of athletes in scien-
tific training, (2) clinical evaluation of patients in biomechan-
ics, (3) computer graphics and animation in entertainment, and
(4) man–machine interfaces via gesture signaling. The applica-
tions of elastic motion also span a wide spectrum. For example,
applications related to facial recognition and recovery, model-
based image compression, animation of nonrigid objects, and
clinical examination of the left ventricle, all involve the anal-
ysis and 3D structure recovery of moving objects with elastic
properties.

Since nonrigid motion encompasses a wide range of possi-
ble motion transformations, a general paradigm for estimating
motion parameters would be extremely difficult, if not impossi-
ble, to develop. Investigators have proposed various approaches
to deal with different motion transformations, along with cer-
tain restrictions imposed on the object behavior. This paper
examines the trends in the research on articulated and elastic
motion. A taxonomy of motion types is included to give an
overview of the general types of nonrigid motion and their formal
definitions.

This paper is an extension of an earlier study [1] and is orga-
nized as follows: Section 2 delineates the classification schemes
proposed by Kambhamettuet al. [50]. Sections 3 and 4 provide
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reviews ofarticulatedandelasticmotion, respectively. Finally,
our conclusions on the current state of nonrigid motion analysis
are presented in Section 5.

2. TAXONOMY OF MOTION TYPES

Nonrigid motion was first classified into three categories—
articulated motion, elastic motion, and fluid motion—by Huang
[41]. Goldgofet al. [34] refined the classification according to
the mean and Gaussian curvature changes of the object surface
and defined three restricted classes: isometric, homothetic, and
conformal motion.

Kambhamettuet al. [50] proposed an extended classifica-
tion scheme based on the degree of nonrigidity of the objects.
Figure 1 depicts the classification tree for the motion of objects
according to Kambhamettu’s definition. The motion of objects is
generally divided into two classes: rigid and nonrigid motion.
Nonrigid motion is further subdivided into the restricted and
general classes according to the degree of deformation. Articu-
lated motion falls into the restricted class, whereas elastic motion
falls into the general classes of nonrigid motion.

The definitions of the different motion classes are briefly de-
scribed as follows:

• Rigid motionpreserves all distances and angles and has no
associated nonrigidity.
• Articulated motionis piecewise rigid motion. The rigid

parts conform to the rigid motion constraints, but the overall
motion is not rigid.
• Quasi-rigid motionrestricts the deformation to be small.

A general motion is quasi-rigid when viewed in a sufficiently
short interval of time.
• Isometric motionis defined as motion that preserves the

distances along the surface and the angles between the curves
on the surface.
• Homothetic motionis motion with a uniform expansion or

contraction of the surface.
• Conformal motionis nonrigid motion which preserves the

angles between the curves on the surface, but not the distances.

FIG. 1. The classification tree for motion of objects defined by Kambhamettu
et al.The asterisk indicates the two areas we focus on in this paper.

• Elastic motionis nonrigid motion whose only constraint is
some degree of continuity or smoothness.
• Fluid motion violates even the continuity assumption. It

may involve topological variations and turbulent deformations.

The following review is restricted to two categories of non-
rigid motion, namely, articulated and elastic motion, due to the
interests of the authors. In discussing each type of motion, we
follow the bottom-up strategy which most investigators apply to
accomplish various high level tasks.

3. ARTICULATED MOTION

The focus of this section is onarticulated motion, in particu-
lar, motion analysis which utilizes the characteristics of object’s
shape and jointed body parts. A number of researchers [3, 13,
17, 33, 78] have focused on high-level processing of motion
analysis using temporal data of joints in 2D or 3D. Articulated
motion is considered as an ordered sequence of various states
of phase vectors [13, 17]. Recognition of different gestures can
be reduced to finding the specific order of these atomic motion
states corresponding to prototype gestures. We do not present
a detailed discussion of this type of approach because the non-
rigidity of the human shape is not considered.

Studies of articulated motion may be classified as those that
usea priori shape models and those that do not. This classifica-
tion relies on whether knowledge of the object shape is employed
in the motion analysis. Both classes follow certain standard pro-
cedures to accomplish the defined tasks by using a bottom-up
approach: (1) feature extraction, (2) feature correspondence, and
(3) motion analysis. In cases where thea priori shape of the ob-
ject of interest is unknown, the analysis usually starts by extract-
ing object features, such as joint or corner points, edges, surfaces,
and 3D blocks. Certain assumptions about the object motion are
then imposed to establish feature correspondence. Based on the
identified feature correspondence, high-level tasks such as mov-
ing body segmentation, joint location, and 3D recovery of the
structure can be performed. In approaches usinga priori shape
models, the feature correspondence phase is replaced by match-
ing the 2D image sequence to the 3D geometrical model data.
Therefore, the model configuration determines the complexity
of the matching. Typically, the shape of the object of interest
(usually human form) is modeled by either stick figures or vol-
umetric graphics. Human motion is normally measured by the
movements of the lower limbs [12, 52, 69, 101], such as the
velocities of the hip, knee, and ankle, or the angular velocity
of various body parts. After the relationship between the image
and model data is established, the 3D structure of the object can
be fully recovered.

Although the two methodologies described above are based
on different scenarios, they also can be combined to accomplish
complex and high-level tasks. For example, a complete system
can start with extracting coarse features at low level and perform
the basic identification. Then a model with finer details can be
used to make the feature correspondence and motion analysis
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more accurate. Using thea priori shape model also verifies the
former identification. Niyogi and Adelson’s work [69] fits this
scenario closely. Other work discussed subsequently more or
less focuses on a certain subset of this scenario.

3.1. Motion Analysis without a Priori Shape Models

Among the approaches that do not usea priori shape models,
there is a large diversity in the feature characteristics and motion
assumptions that determine the complexity of feature correspon-
dence, motion analysis, and other high level processes. These
problems are discussed below.

3.1.1. Feature Characteristics

The simplest feature is probably the well knownmoving light
display (MLD) [31, 46, 82]. Johansson [46] first showed that
human eyes can interpret a moving human-like structure with
MLDs only. Further studies by Rashid [82] found that the strong
relationship between the movements of related points can be
used directly for 3D reconstruction. Similar to Johansson’s ex-
periments, Rashid used projected MLDs of a person walking
along different paths as input. Along this vein, Webb and
Aggarwal [100] extended the study of the Johansson-type figures
for a 2D image sequence. The object studied by Qian and Huang
[80] is similarly treated as a collection of rigid lines linked by
points. The difference is that the stick figures in [80] are obtained
from synthetic 2D data. In [38], Hel-Oret al.measured 3D po-
sitions of the feature points from stereo image pairs instead of
using the 2D projection of 3D points as the input. Motion anal-
ysis is conducted based on the location of each point in the local
coordinates of the component where the point belongs and the
orientation of this component relative to the viewer coordinates.

Recent work by Kurakakeet al. [57] attempts to locate the
joints of articulated objects through motion using extracted rib-
bons. Their use of 2D data from real images as input requires
more preprocessing of the image, such as edge detection, line
fitting, and ribbon extraction, to achieve satisfying results. Simi-
larly, Kakadiariset al.[48] used 2D contours as shape represen-
tations for segmentation and motion estimation. Joints are de-
termined as the overlapping area of two moving subparts based
on motion and shape information.

The 3D block is another feature being studied. The motion
analysis by Asadaet al. [7, 8] deals with line drawings gener-
ated by a computer, which serve as the orthogonal projection of
a time-varying block’s world. Recent work of Eggertet al. [30]
utilizes range images of 3D blocks and converts the point in-
formation into complete 3D boundary descriptions. In [30], the
object is made up of three portions: part, connection, and link-
age. All the vertices used for feature matching are characterized
by their 3D coordinates.

3.1.2. Motion Assumptions

It appears that no versatile algorithms exist for the nonrigid
motion analysis of complex and variable nonrigid objects. In-

stead, algorithms use certain assumptions to solve problems in a
particular area, mostly to simplify the process of feature corre-
spondence. One widely used assumption is known as thesmall
motion assumption, i.e., the assumption that the motion between
consecutive images is small. This is addressed or indicated in a
fairly large number of publications, e.g., [7, 8, 30, 48, 57, 100].
Another approach is to add constraints on the change of move-
ments spatially or temporally. For example, smooth motion con-
straints [82], such as constant velocity or constant acceleration
[7, 8], can reduce the ambiguity of feature matching between ad-
jacent frames. In addition to smooth motion constraints, Rashid
[82] also adopted the heuristic assumption that points belong-
ing to the same object should have a higher correlation in the
projected position and velocity. In a similar scenario, Webb and
Aggarwal [100] imposed thefixed axis assumption, i.e., that
“every rigid object movement consists of a translation plus a
rotation about an axis that is fixed in direction for short periods
of time.” In their work, the motion of the object is assumed to be
in a plane parallel to the image plane, which justifies the use of
orthogonal projection. The rigidity of the connected parts makes
it possible to recover the 3D structure of jointed objects. Qian
and Huang [80] assume perspective projection instead. Other
constraints, such as coplanar motion, fixed axis, and at least one
known joint, are also imposed to aid the construction of their
system. In [38], constraints were imposed based on the rigidity
of articulated parts, such as constant distance, parallelism, and
coplanarity between certain points.

3.1.3. Feature Correspondence

Feature correspondence is usually the most important and dif-
ficult task in motion analysis. Since the input is usually unlabeled
and not explicitly identified in each frame, tracking features from
one frame to the next becomes especially challenging. As men-
tioned earlier, well-defined constraints are usually introduced to
eliminate invalid matches and distinguish unique connections.
The characteristics of the shape representation also influence
the complexity of the matching algorithm. There is always a
trade-off between the extraction of features and the establish-
ment of feature correspondence. For higher level features, the
tracking and matching process become relatively easier since the
number of features is much smaller compared to low level ones.
Extraction of stable high-level features from an image, however,
remains a tough problem.

Rashid [82] made good use of the smooth motion assumption
for matching between consecutive frames. Feature correspon-
dence is established by minimizing the difference between the
expected position of each point and the actual position of the
corresponding point. MLDs of simple objects can be tracked ac-
curately, but velocity information must be incorporated for com-
plex objects. He tried to get around the difficulty of determining
the initial velocity by simply assuming that tracking always starts
at a clearly interpreted frame. Hel-Oret al. [38] applied the Ex-
tended Kalman Filter to enforce the imposed constraints into the
pose solution. The correspondence is considered valid when the
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error between the predicted position and measured position is
minimized subject to the rigidity constraints of the subparts.

Compared to points, using 2D contours as a high-level feature
reduces the possibility of false matching but increases the bur-
den of preprocessing tasks. After successfully extracting ribbons
and their symmetric axes, Kurakakeet al. [57] classify ribbons
into layers in terms of their widths. Small interframe motion
ensures correspondence between ribbons in the same layer with
a similar axis angle. Matching one ribbon in one frame with
two ribbons in the next frame is allowed in case the articula-
tion appears or disappears. Detected articulations are verified
using matching results. In Kakadiaris’s work [48], feature cor-
respondence is solved by accumulating knowledge of the 2D
deformable model, which is derived solely from previous im-
ages. The model is initially defined as a single part object. As
different postures of the object occur, the object evolves into
various subparts based on thebending deformation, consisting
of three zones with different motion types: thefixed zone, the
bending zone, and therelocation zone. Therefore, the model de-
forms into different part models accordingly. At the end of the
process, joints are located as the connections of the subparts
based on motion.

Tracking the motion of 3D blocks is more complicated due to
the possible occlusion of surfaces, edges, or vertices of objects.
Based on the work of Huffman [42], Clowes [22] and Waltz
[99], Asadaet al. [8] applied a transition table of junction la-
bels and contextual information between consecutive frames to
analyze the structural change. The vertices are used as the prim-
itive for feature matching. All the labeled lines are segmented
into objects, and the correspondence of each junction through-
out the image sequence is established using an object-to-object
matching method. The 3D vertex matching in Eggert [30] is con-
ducted by using the maximal point matching scheme of Chen
and Huang [20]. The algorithm produces groups of three or more
points satisfying local distance and angular constraints in each
group. Constraints such as shape rigidity, planarity and small
interframe motion are incorporated in order to eliminate mis-
matched sets and identify the proper correspondence. The opti-
mal match is found by selecting the minimum among the sums
of the square error of all possible attributes. In the final stage, the
global consistency of point sets is guaranteed throughout the en-
tire image sequence, eliminating the possibility of “accidental”
alignment.

3.1.4. Motion Analysis

Once the feature correspondence is established, motion vec-
tors are recovered to reveal the underlying structure of the ob-
ject. High-level tasks such as segmentation, image compres-
sion, gait recognition, or structure recovery can be subsequently
pursued.

Rashid [82] took advantage of the heuristic observation that
velocities and positions of points belonging to the same object in
consecutive frames are highly correlated. He constructs a graph
with four dimensional nodes, which is formed by the projected

positions of points along with their projected velocities. The
edges of the graph are weighted by the Euclidean distance be-
tween the nodes. Then aminimal spanning treeis formed and
the graph is separated into clusters based on the cost of the cut
function [72]. Similar techniques are applied to determine the
intraobject relationship, except that rotation becomes an impor-
tant factor in the analysis.

In Kurakake’s work [57], ribbon motion is used to locate the
joints of the moving object. After ribbons are extracted, those
representing the background or still objects are removed from
consideration according to the displacement between adjacent
frames. The articulations are located among connected or close
ribbons. Finally, the description of the structure of the object
of interest is integrated. Recent work of Kakadiariset al. [48]
uses a similar scenario. They combine the three courses, which
are segmentation, shape, and motion estimation, together in the
evolution of the data-driven deformable model. Joints of moving
parts are identified as the connections of the existing segments.

The work by Asadaet al.[7, 8] assumes that each object con-
sists of a main body and its subparts (see Fig. 2). Therefore,
they focus on multiaxis motion analysis and object segmen-
tation based on the rigidity of the part shape. 3D geometrical
parameters such as orientation and edge lengths are considered
as matching primitives for the motion. Motion is segmented into
subsequences of translation and rotation only. They use a tech-
nique calledGaussian sphere mapping[44] to find the number
of axes along with the rotation vectors from an image sequence.
Additional constraints such as constant velocity or acceleration
of the vertices are employed to resolve ambiguity. Along this
vein, Eggertet al. [30] sought to obtain the potential connec-
tions between the parts after the feature correspondence is es-
tablished. Linkages are detected by computing causation ratios,
which account for the relationship between the movement of
two parts.

FIG. 2. The main body and its subparts (derived from Asada [7, 8]).
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Among the high-level processes in motion analysis, one of
the conventional tasks is to reconstruct 3D structure, using ei-
ther spatial or temporal information. Kakadiariset al. [47] at-
tempted to reconstruct the 3D structure of a human body part
from three mutually orthogonal views. Since the use of multiple
cameras increases the computational cost, monocular methods
are normally used in the study of articulated motion when depth
information is needed. In Webb and Aggarwal’s work [100],
thefixed axis assumptionindicates that a point connected to the
fixed axis lies in a circle during its movement. When the circle
is projected into the 2D image plane, it becomes an ellipse. The
ellipse is determined from a real image sequence. Thus, the 3D
structure of points belonging to the rigid parts of an articulated
object can be computed through the fitting of the ellipse. Since
the validity of the system depends on the shape of the projected
ellipse, the method is void if there is no rotation, or if the ro-
tational axis is perpendicular or parallel to the image plane. In
these cases, either there is no circle, or the projected circle is a
circle without depth information, or a line. Qian and Huang’s
work [80] focuses on the high-level theoretical analysis of artic-
ulated motion. They attempt to estimate the depth of the joints
in a stick figure via decomposition of the object. The system
equations are established on the assumptions of the rigidity of
the parts and coplanar motion. Uniqueness of the solution is an-
alyzed for three cases: (1) two points in four frames, (2) two
points in three frames, and (3) three points in two frames. Then,
they adopt the continuation method to estimate the depth infor-
mation of the whole system. Experiments on synthetic data have
verified their algorithms. In their method, the system equations
are hard-constrained and thus sensitive to noise corruption.

3.2. Approaches Using a Priori Shape Models

Although motion recovery without the use of ana priori shape
model is highly desirable, it introduces additional complexity to
the tracking procedure. Sometimes, difficulties in feature corre-
spondence cannot be overcome without usinga priori knowl-
edge of the object shape. Everyday experience indicates that
human beings usually “see” an object by comparing it to prior
knowledge of similar objects in the memory. Therefore, model-
based approaches come up naturally. Since most of the previous
work in this area has dealt with human body movements, we
restrict our review to the human form as the object of study.

In the rest of this subsection, we will first discuss various
models of the human body and the analysis of human motion.
Then, we will address the high-level procedures such as body
matching, part recognition, and 3D structure determination.

3.2.1. Human Model Definitions

Conventionally, the human body is represented either by a
stick figure (Fig. 3) or a volumetric model (Fig. 4). The stick
figure representation [2, 12, 21] is based on the observation that
human motion is essentially the movement of the human skele-
ton brought about by the attached muscles. Volumetric models
(such as 2D ribbons [58], generalized cones [2], elliptical cylin-

FIG. 3. A stick-figure human body model (based on Chen and Lee’s work
[7]).

ders [39, 84], and spheres [71]) better represent the shape of
the human body, but require more parameters for computation.
Each model can be scaled according to the height of the subject.
Akita [2] and Peraleset al. [77] incorporate both stick figures
and volumetric models to perform different levels of matching.
Table 1 lists the researchers and the human models used in their
research.

FIG. 4. A volumetric (cylinder) human body model (viewed from two direc-
tions), derived from Hogg [14].
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TABLE 1
Researchers and Their Human Models

Human model

Researcher’s name Stick figure Volumetric model

O’Rourke and Badler
√

sphere
Hogg

√
elliptical cylinder

Akita
√ √

cone
Chen and Lee

√

Okawa and Hanatani
√

2D mask
Yamatoet al.

√
2D mesh

Kinzel
√

2D region
Leung and Yang

√
2D ribbon

Rohr
√

elliptical cylinder
Bharatkumaret al.

√

Perales and Torres
√ √

various 3D primitives

Chen and Lee’s 3D stick figure model [21] contains 17 seg-
ments and 14 joints for the head, torso, hip, arms, and legs. Both
torso and hip parts are assumed to be rigid. The whole stick
figure model is described with the 3D space of the joints and
the length of each rigid segment. The identification of a pose of
human motion in this model involves the joint location in 3D
coordinates and the 3D joint angle measurements. Bharatkumar
et al. [12] use a 2D stick figure to model the lower limb of
the human body, where joints such as hip, knee, and ankle are
considered.

A large body of literature concerns the shape recognition of
2D contours of human parts, especially for lower limbs. The 2D
features vary from the lower level masks [70] and meshes [101],
to higher level regions [52] and ribbon representations [58].
Among them, the 2D ribbon model proposed by Leung and Yang
[58] is the most complicated. It contains two components: the
basic body model and the extended body model. The basic body
model outlines the structural and shape relationships between the
body parts. Several rules are imposed along with the structure,
such as structural constraints, shape constraints, and balancing
constraints, to ease the body labeling process. The extended
model consists of three patterns: the support posture model, the
side view kneeling model, and side horse motion model. It at-
tempts to resolve ambiguities in the interpretation process by
identifying a certain pattern from the outlined picture.

A collection of elliptical cylinders is also commonly used in
modeling nonrigid forms. The models in both Hogg [39] and
Rohr [84] fall into this category; more specifically, they are the
cylinder models originated by Marr and Nishihara [61]. In this
model, the human body is described by 14 elliptical cylinders.
Each cylinder is controlled by three parameters: the length of the
axis, and the major and minor axes of the ellipse cross section.
The origin of the coordinate system is located at the center of
the torso. Along the same vein, Rehget al. [83] rendered two
occluded fingers with several cylinders, and the center axes of
the cylinders are projected into the center line segments of the
2D finger images.

O’Rourke and Badler [71] use an elaborate sphere model con-
sisting of 24 rigid segments and 25 joints. The surface of each
segment is defined by a collection of overlapping sphere prim-
itives. A coordinate system is embedded in the segments. The
model also includes the constraints of human motion, such as
restrictions on joint angles, and an algorithm to detect collisions
between nonadjacent segments.

Recent work by Goncalveset al. [35] addressed the problem
of motion estimation of a human arm in 3D using a calibrated
camera. Both the upper and lower arm are modeled as truncated
circular cones, and the shoulder and elbow joints are assumed to
be spherical joints. The hand tip is considered to be an extension
of the forearm axis.

As mentioned previously, both stick figures and volumetric
models can be integrated to form a more comprehensive system
for coarse-to-fine processing. In Akita’s work [2], key frames of
2D stick figures are used to guide the approximate order of the
motion and spatial relationships between the body parts. These
key frames represent the crucial moment of a changing pose.
Thus, each frame differs from its predecessor and successor
in the place where the body segments cross or uncross each other.
The stick figure has six segments: head (close to a single point),
torso, two arms, and two legs. No joint is explicitly defined. A
cone model is included to provide knowledge of the rough shape
of the body parts. Each part corresponds to the counterpart of
the stick figure model. Recent work by Perales and Torres [77]
introduces a predefined library with two levels of biomechanics
graphical models. Level One is a stick figure tree with nodes
for body segments and arcs for joints. Level Two is composed
of descriptions of surface and body segments constructed with
various 3D primitives used in computer graphics. Both levels of
the model are applied in different matching stages.

In contrast, Kuchet al. [55] build a generic model of the
surface of a human hand using cubic B-splines to model the
surface of the hand. Their model consists of 300 control points
for rendering into a smoothed surface. Any given hands can
be approximated by adjusting the variations of these control
points based on the calibration results from three camera views.
The focus of their work is on modeling and then rendering it
to real human hands. Tracking of human hands is achieved by
minimizing the error between the real hand image and the model
projection based on the assumption that the initial orientation of
the hand is available.

3.2.2. Articulated Motion Models

A substantial amount of research on articulated motion has
been focused on human motion. Human motion can be described
in terms of kinetics or kinematics. Kinetics involves the study of
the forces/torques involved in generating the movements. Kine-
matics, on the other hand, concerns the geometry of the object,
such as its position, orientation, and deformation. Most of the
model-based approaches in computer vision are concerned with
studies of the kinematic patterns.
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In kinematics, human motion is usually characterized by joint
angles and the horizontal/vertical displacements of joints, as
initiated in medical studies by Murray [66]. Along this vein,
Rohr [84] describes human walking with the joint angles of the
hip, knee, shoulder, and elbow within a walking cycle. In his
experiments, raw kinematic data are interpolated by periodic
cubic splines to create smoothed patterns. Among the motion of
different body parts, the movement of the lower limbs has been
extensively studies in the past [12, 52, 69, 101]. Compared to
the upper trunk and arms, the lower limbs usually move more
regularly and maintain their shapes in a more consistent fashion.
This is indeed the reason why the prototyped hidden Markov
model (HMM) succeeds in recognition of human activities in
an image sequence based on simple mesh symbols [101]. In
[12], Bharatkumaret al. [12] used kinesiology data as the basis
for their walking human model. They measure the projected 2D
angles of the hip and the knee for one walking cycle and fit them
with cubic splines as the model data. Horizontal displacement
of the hip and ankle is also used as a part of the model. A high
correlation has been found between the model and the stick
figure of a subject using medial axis transformation. Similarly,
Kinzel [52] employs the hip and knee angles for modeling limb
movements. In contrast, Niyogi and Adelson’s [69] exploit the
repetition information of the lower limb trajectory for coarse
recognition of a human walking. They assume that the human
is walking at a roughly constant speed and parallel to the image
plane, thus no depth information is considered. An XT-slice
(x axis vs time) of the cube near the ankle is used as a braided
signature for walking patterns. The XT-slice of the head shows
a nearly straight line in an image sequence. These XT-slices
are utilized to outline the contour of a walking human based
on the observation that the human body is spatially contiguous.
A reliable stick figure of the human body is extracted from the
outline images. The corresponding gait was found and compared
to the patterns in the database. Finally, the walking human is
recognized from his gait signature.

Kinematic models of articulated motion also help in tracking
self-occluding articulated objects. Rehget al. [83] assumed an
invariant visibility order of 2D templates of two occluded fingers
to the viewing camera. The hand is assumed to rotate along
the middle finger axis, thus there are three possible occlusion
relations: the second finger occluded by the first, disjoint, and
the first occluded by the second. The definition of this kinematic
motion model simplifies the motion prediction and matching
process between the 3D shape model and its projection in the
image plane.

3.2.3. Part Location

Recognition of body parts is essential for high-level processes
such as segmentation, tracking, and object recognition. It usu-
ally involves region tracking and body labeling. Region tracking
comprises extracting the shape primitive of the subject and de-
termining its location from frame to frame. The labeling process
matches the body parts to their counterparts in the model, so that

a meaningful description of the human motion and structure can
be obtained.

Leung and Yang [58] applied thedifferent picturemethod of
Jain and Nagel [45] along with their own coincidence edge de-
tection algorithm to generate a complete outline of the moving
object images. They proposed a spatiotemporal relaxation pro-
cess to determine which side of the moving edge belongs to the
moving object. Two sets of 2D ribbons on each side of the mov-
ing edge, either a part of the body or that of the background, are
identified according to their shape changes over time. The body
parts are labeled according to the human body model. Then, a
description of the body parts and the appropriate body joints
is obtained. 2D human stick figures are produced as the final
output.

In Akita’s work [2], the first step is to obtain the outline image
by an edge detector and set the viewer’s space coordinate system
in each frame. According to the stability of the different body
parts, the labeling process is executed in the order of legs, head,
arms, and trunk. Two methods are combined to establish the
correspondence between frames regarding the degree of body
movement. If the change of the body segments is small, thewin-
dow codedistance is used to locate the body parts, incorporated
with their position in previous frames. Otherwise, the key stick
frames are applied for dramatic changes of the posture due to
occlusion.

Recently, Goncalves [35] used perspective projection of a 3D
arm model to fit the blurred image of a real arm. Matching is con-
ducted by recursively minimizing the error between the model
projection and the real image by dynamically adapting the size
and orientation of the model. Rehg [83] apply a similar approach
except that thewindow functionwas adopted to exclude the ef-
fects of occlusion and locate the templates of finger images to
be matched.

3.2.4. 3D Structure Determination

Since 3D structure reconstruction that depends solely on the
analysis of real image data is extremely difficult and unreliable,
most approaches [21, 39, 77, 84] establish a match between the
2D real image and the 3D graphical model. Once the relationship
between the graphical and the real image data is discovered,
one can directly employ the noise-free synthetic model data to
simplify higher level tasks [71].

Chen and Lee [21] attempted to recover the 3D configuration
of a moving subject according to its projected 2D image. A set of
possible interpretations in 3D stick figures is obtained from the
basic analysis of the gait. To eliminate a great number of false so-
lutions, they propose a computational model using graph search
theory. The search space is constrained by the smoothness and
continuity of human motion. Physical constraints, such as angle
constraints, distance constraints, and collision-free constraints,
are imposed to exclude invalid matches. The transformation ma-
trix from the body coordinate system to the viewer’s coordi-
nate system is constructed using the specific six feature points
in the head. Then, the locations of the joints in the model are
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transformed into the viewer’s coordinates. Finally, the 3D struc-
ture of the whole body is recovered.

Hogg [39] presented a computer program called the WALKER,
which attempts to “see” a walking person. The system is made
up of three phases. First, the raw images sequence is input to
a differencing algorithm to produce an isolated region of the
moving object. The region including the moving object serves
as an indication of the object’s size, location, and rough posture.
Next, the outline of the gray-scaled object is extracted using the
Sobel operator and a fixed threshold. Then, an exhaustive search
is performed to find the corresponding posture of the model
that is the best match of the current image. The matching pro-
cess is implemented by maximizing the plausibility value using
a pixel-by-pixel Least Mean Squares (LMS) fitting. Finally, the
description of the 3D structure for the walking person is gener-
ated. Rohr’s work [84] is quite similar to Hogg’s, except for the
method of mapping the gray-scaled image to the corresponding
model. After the outline of the moving object is extracted, Rohr
applied the eigenvector line fitting [29] to approximate the edges
of the image. Then, a similarity measure is calculated to locate
the proper model. A recent study by Perales [77] follows a simi-
lar strategy, except that they define the model in a more elaborate
way according to the input image and the user’s assignment.

In O’Rourke and Badler’s experiments [71], the images were
taken from a computer-controlled human model. The segments
of the head, hands, and feet were lightly colored to present a
sort ofmoving light display. Predicted 3D regions correspond-
ing to various body parts are fed into theimage analysisphase
to produce a more accurate location. After the range of the pre-
dicted 3D location of the body parts becomes smaller, theparser
fits these location–time relationships into certain linear func-
tions. Then, thepredictionphase estimates the position of the
parts in the future frame based on the determined linear func-
tions. Finally, asimulatorembedded with extensive knowledge
of the human body translates the prediction data into correspond-
ing 3D regions, which will be verified by theimage analysis
phase in the next loop.

4. ELASTIC MOTION

Elastic motion refers to the type of nonrigid motion whose
only constraint is some degree of continuity or smoothness. In
this domain of general deformable motion, there are no con-
straints other than topological invariance. Most approaches that
deal withelasticmotion assume an object model and then try to
model the deformations as variations to the model parameters.
A notable example of elastic motion is the motion of the heart
(specifically, the left ventricle). Much of the research on elas-
tic motion has concentrated on the analysis of left ventricular
motion, due to its importance in aiding the understanding of the
physiology of the normal heart and detection of cardiovascular
diseases.

In general, model-based approaches have the advantage of
constraining the degrees of freedom exhibited by the deformable
objects. The correspondence problem is simplified as the incor-

poration of shape models significantly reduces the search space
in the feature matching process. In some cases, the correspon-
dence problem is transformed to a parameter estimation prob-
lem. Using physically based modeling primitives has the added
advantage of resolving the 3D shape reconstruction problem
usually encountered in nonrigid motion analysis. These meth-
ods are most effective whena priori knowledge about the mo-
tion structure is available. If the motion characteristics are not
known in advance, applying such methods could cause errors in
motion estimation as well as in shape recovery. In such cases,
approaches that assume no prior knowledge about the motion or
object structure can be utilized to determine the general prop-
erties of the nonrigid motion; then proper modeling primitives
can be selected to refine or enhance the analysis. Thus, in some
sense, these two general approaches can be integrated to yield a
more reliable scheme for analyzing general nonrigid motion.

4.1. Motion Recovery without a Priori Shape Models

In this subsection, we discuss motion recovery strategies based
on the most general assumptions of elastic motion, i.e., coher-
ence of bodies and smoothness of motion. Since no explicit
shape models are used, one must rely on image features to track
the nonrigid motion. The analysis usually consists of three major
stages: (1) feature extraction, (2) feature correspondence, and (3)
motion and structure recovery. The overall scheme appears very
similar to that used by stereo vision or rigid motion estimation.
Nonetheless, we will see remarkable differences in each stage
of processing as we proceed.

4.1.1. Feature Extraction

Establishing the correspondence between image features is
usually the primary step in recovering structure from motion.
Unlike situations in which the rigidity assumption is valid, when
deformation is allowed, there usually are no image features that
bear reliable structural and geometrical information about the
objects. This significantly limits the type of matching primitives
that can be used to analyze nonrigid motion. In general, two
levels of features have been employed, i.e., low-level features
such as points and high-level features such as contours.

Point features are widely used, not only because they are usu-
ally the only type of features found in many biomedical images,
but also because they are invariant with respect to deformable
transformations. Since point features are a fairly low-level repre-
sentation, the accuracy of the matching results depends heavily
on the validity of the motion smoothness assumption. In other
words, large deformations cannot be properly addressed.

The contour of a 2D object or the bounding surface of a 3D
object are classified as high-level features. These representations
provide richer information than edges or collections of points.
Therefore, in establishing the correspondence between contours
(2D data) or surfaces (3D data), assumptions such as local rigid-
ity or small interframe motion can be somewhat relaxed. In addi-
tion, since the contour contains structural information about the
object, one expects the matching results to be more robust than



   

150 AGGARWAL ET AL.

those obtained from low-level feature matching. A major prob-
lem, however, is that the extraction of reliable contours/surfaces
from a sequence of nonrigid shapes is itself a difficult problem,
especially in biomedical images that exhibit poor contrast. In
such cases, incorporation of parametrically deformable models
may assist the task of boundary detection [90].

4.1.2. Feature Correspondence

There are two general approaches for feature correspondence
in nonrigid motion analysis:explicitandimplicit matching meth-
ods. In explicit matching, the finite set of image features ex-
tracted from image sequences are examined and compared to
arrive at one-to-one mappings based on certain likelihood mea-
sures. In implicit matching, distinct features are not isolated.
Instead, an energy functional incorporating internal forces (e.g.,
smoothness constraint) and external forces (e.g., feature energy)
is formulated and the feature tracking problem is converted to an
optimization problem. In the following, we discuss strategies for
matching low-level and high-level features using explicit match-
ing methods. We also touch upon the topic of implicit, low-level
feature matching. Implicit, high-level matching is closely re-
lated to physically based shape models and will be treated in
latter subsections.

Explicit, low-level feature matching.Strickland and Mao
[93] developed a relaxation algorithm to compute correspon-
dence in image sequences containing nonrigid shapes. A special
representation scheme consisting of a network of nodes con-
nected by branches is used to describe the edge map. Critical
points, such as branching points and corners, are selected as can-
didates of matching primitives. These points are matched using
an iterative relaxation procedure, where the matching probabil-
ity is updated according to the similarity between the geometry
of neighboring nodes, the averaged motion vector, and the rela-
tive location of neighbors with respect to the current node. Even
though all the above constraints favor local rigidity, the particu-
lar image structure permits global deformation between image
sequences. This technique has been applied to track fluid flow
features in combustion image sequences [92].

Shapiroet al. [87] presented a parallel strategy for tracking
corner features on independently moving (and possibly non-
rigid) objects. Their system consists of two components: amat-
cherand atracker. The matcher computes the correspondence
based on local patch correlation, while the tracker supervises the
matcher over time, maintaining the motion trajectory as well as
feeding the predictions to the matcher. The key assumption in
this work, however, is that the displacement between two image
frames is small, which is a severe restriction in many applica-
tions. Moreover,corner features might not be present in many
practical situations, and other reliable means to extract physi-
cally meaningful points have to be utilized.

Liao et al. [59] have addressed the analysis of three-dimen-
sional shape and shape change in nonrigid biological objects
imaged via a stereo light microscope. They proposed a cooper-
ative spatial and temporal feature matching process for stereo

and motion analysis. The correspondence problem is cast into a
four-dimensional maximum weighted matching problem, which
belongs to the class of NP-complete problems. To get around
NP-completeness, they use a relaxation labeling technique to
effectively reduce the number of possible matches, and then ap-
ply a local search algorithm that returns a near-optimal solution
to the modified problem. The approach is applicable to general
feature types. Experimental results on real images of a frog’s
ventricle usingpoint features are demonstrated.

Explicit, high-level feature matching.In [9], Bajcsy and
Kovacic proposed a multiresolution elastic matching algorithm
for medical applications. Contours of the brain atlas and the CT
(Computerized Tomography) brain from three different scales
are matched in a coarse-to-fine manner. After proper registra-
tion, matching starts at the coarsest level and the result is prop-
agated through the next finer level. The finest level solution is
then used to incrementally deform the model using an elastic
constraint equation. This procedure continues until a satisfac-
tory match is found. It is shown that by integrating information
from different scales, robustness is achieved and the restriction
of small deformation is alleviated.

Amini et al. [4] computed the displacement vectors between
two successive contours using a two-stage process. The first
stage involves the initial estimation of the displacement vectors
by modeling the contour as an elastic rod and minimizing the
bending energy. In the second stage, a smooth vector flow field is
obtained by refining the initial displacement vectors based on an-
other energy function. In [5, 6], the method is extended to allow
surface tracking of nonrigid objects undergoing conformal mo-
tion.

Cohenet al. [23] presented a method to track points on de-
formable contours using curvature information. High curva-
ture points on the contour are used as landmarks to guide the
matching process. Assuming that the boundaries have been suc-
cessfully extracted, they formulate an energy functional which
preserves the matching between high curvature points while en-
suring smooth flow field everywhere. This approach appears to
be very similar to [6], except that an explicit description of the
mapping between the contours to be matched is provided.

Serra and Berthod [86] introduced an algorithm for optimal
subpixel matching of contour chains and segments. The algo-
rithm relies only on the geometrical properties of the contours,
eliminating the need for parametrization of the deformation.
Each contour is treated as a collection of small linear segments.
Contour matching is achieved by minimizing adeformation
measurebetween the linear segments using a dynamic program-
ming framework.

Implicit, low-level feature matching. In implicit matching,
extraction of feature sets is not required. Instead, matching is
accomplished on a global basis, where a one-to-one relationship
between local features might not exist or is unimportant. A clas-
sic example of this type of matching strategy is the computation
of optical flow by Horn [40]. Due to its sensitivity to occlusions,
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discontinuities, and noise, however, this method has shown only
limited success in practical situations.

Bartelset al. [10] introduced the concept of material coordi-
nates in modeling shape changes in microscopic images. Even
though the basic assumption that brightness does not change
too much between image frames is similar to that in optical flow
analysis, their algorithm seeks a deformation transformation be-
tween the material coordinates rather than computing the flow
vector explicitly. Concepts from differential geometry are ap-
plied to assist the analysis. The variational technique employed
to optimize the energy functional, however, yields complicated
nonlinear, second-order, coupled partial differential equations.
Convergence of the numerical solution is thus an issue of con-
cern.

Kambhamettu and Goldgof [49] studied the recovery of point
correspondence inhomotheticandconformalmotion—two re-
stricted classes of nonrigid motion [50]. In these classes of con-
fined nonrigid motion, there is a mapping relating the Gaussian
curvatures of the surface at corresponding points. By hypothesiz-
ing all possible point correspondences in a small neighborhood
and minimizing the error function which captures the deviation
from the underlying motion class for each hypothesis, locally
consistent matches between points are obtained. Once the point
correspondence is recovered, stretching parameters can be esti-
mated.

Chaudhuri and Chatterjee [18] established implicit point cor-
respondence by means of subset matching. Subsets are created
by grouping points lying on a single surface. Thus, the corre-
spondence problem is reduced to identifying the same surface
at different time intervals. The results of matching are used to
compute translation, rotation, and deformation parameters for
nonrigid objects.

Huttenlocheret al.[43] addressed the tracking of nonrigid ob-
jects in complex scenes. They decompose the image of a moving
object into two components: 2D shape change and 2D motion.
The 2D shape is represented by a collection of points. Correspon-
dence between shapes is achieved by comparing the Hausdroff
distance between two group of points.

4.1.3. Motion and Structure Recovery

Motion recovery without the explicit use of shape models fails
to address the important problem of structure modeling. Estab-
lishing explicit correspondence between image features only
gives flow vectors at certain locations. Interpolation techniques
must be applied to obtain a dense map [93]. Implicit point match-
ing algorithms produce denser optical flow fields, but the results
are usually noisy and necessitate some smoothing process. On
the whole, additional processing is required to reconstruct the
motion transformation of the entire body. Unfortunately, this
crucial issue has been largely ignored by most researchers.

4.2. Model-Based Approaches

In nonrigid motion analysis, dynamic shape modeling pro-
vides the mechanism for fitting and tracking visual data. It plays

the dual role of assisting motion estimation as well as structure
recovery. Using deformable models, the seemingly unstructured
elastic motion can be compactly represented by a small num-
ber of parameters. The task of motion recovery is often reduced
to the problem of parameter estimation. In this subsection, we
will discuss two classes of shape modeling primitives:paramet-
ric models andphysically basedmodels. Parametric models are
suitable for describing the shape of static objects and, with proper
modification, can also be used to model deformable surfaces.
Physically based models are fundamentally dynamic and are
governed by the laws of rigid and nonrigid dynamics expressed
through a set of Lagrangian equations of motion. They are more
versatile in terms of modeling complex local deformations.

4.2.1. Parametric Models

A number of parametric surface models have been proposed
for geometric shape representation. Parametric models concisely
capture the global shape of the objects, which sometimes im-
plies that heuristic,a priori knowledge about the object must
be provided. Consequently, most parametric models are able to
represent only a limited class of objects and are not well suited
to model dynamically deformable objects without proper modi-
fication. In the following, we briefly discuss these representation
schemes and comment on their usage and limitations in dealing
with nonrigid shapes.

Polynomials. Polynomials have been extensively used be-
cause of their simplicity [11]. Spheres, cylinders, and cones are
some simple second degree surfaces that are commonly used. In
most cases, these simplified shape primitives are very coarse ab-
stractions and can, at best, provide some qualitative measure of
the visual data. For a discussion of dynamic shape representation
using polynomials, the reader is referred to [53].

Generalized cylinders. Generalized cylinders [79] are con-
structed by sweeping an arbitrary two-dimensional set along an
arbitrary axisa(s), called thespine, in 3D space. They can repre-
sent either a solid or a surface. Many parameters such as surface
area or volume can be easily computed from this representation.
However, determining the axisa(s) and fitting the visual data
to the model are nontrivial tasks, especially when deformation
of the object shape is likely to happen. They are better suited
for modeling simple geometric shapes than complex, dynamic
objects.

Spherical harmonics. Spherical harmonic functions are a
complete, orthogonal set of functions on the sphere under the
inner product

〈 f1, f2〉 =
∫

f1 f2 sinφ dφ dθ. (1)

Therefore, any radial or stellar surface (surface obtained by de-
forming a sphere by moving points in the radial direction) can
be represented by a sum of these basis functionsUm

n (φ, θ ) and
Vm

n (φ, θ )
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R(φ, θ ) =
N∑

n=0

n∑
m=0

AnmUm
n (φ, θ )+ BnmVm

n (φ, θ ). (2)

Because of its ability to capture the details of local surface patch,
the spherical harmonic function has been used by Chenet al.
[19] as a surface modeling primitive for interpolating the local
deformation of the left ventricle.

Splines. Splines have been widely used in computer-aided
geometrical design and computer graphics since the early 1960’s.
Recently, they have found their way into modeling and data re-
duction applications in computer vision [96]. In fact, thesnake
model we will discuss later reduces to a spline function when
external forces are removed. (We will present a detailed discus-
sion on the snake model in the next section, due to its strong
influence on the study of nonrigid shapes.) In a series of papers
[14–16], Bookstein illustrated the potential applications of thin-
plate splines, including the modeling of biological shape change,
production of biomedical atlases, and image feature extraction.
He demonstrated the decomposition of deformations byprin-
cipal warps, which are geometrically independent, affine-free
deformations of progressively smaller scales. Such a decompo-
sition scheme is conceptually similar to conventional orthogonal
functional analysis.

Superquadrics. Another class of modeling primitives that
has received much attention recently is superquadrics, a family
of parametric shapes derived from the parametric forms of the
quadric surfaces. Solina and Bajcsy [89] discussed the recovery
of parametric models from range images using superquadrics
with global deformations. Mathematically, the equation for a
superquadric surface is given as

e(η, ω)=
a1Cε1(η)Cε2(ω)

a2Cε1(η)Sε2(ω)
a3Sε1(η)

 , −π
2
≤ η ≤ π

2
,

−π ≤ ω ≤ π, (3)

where Cε(η)= sgn(cosη)|cos(η)|ε and Sε(η)= sgn(sinη)
|sin(η)|ε . The variablesη andω correspond to latitude and lon-
gitude in a spherical coordinate system.ε1, ε2 are known as
squarenessparameters anda1,a2, anda3 are scaling factors.
By varying these five parameters, a variety of shapes can be
obtained. While superquadrics are capable of modeling global
shapes, they usually cannot give accurate descriptions of natural
objects. Later, we will discuss how global deformations (bend-
ing, tapering, twisting, and concavity) and local deformations
can be incorporated to enhance the modeling capabilities of su-
perquadric surfaces. Hyperquadrics [37] are generalizations of
superquadrics that allow smooth deformation from shapes with
convex polyhedral bounds, although no explicit parameterized
form is possible.

Implicit algebraic surfaces. An implicit surfaceSis defined
as the zero set of some functionf

S= {x | f (x) = 0}, x = (x, y, z)T . (4)

In [94], Sullivanet al.used the parameterized algebraic surface
defined by

f (x, p) =
q∑

j=1

pj x
kj yl j zmj = 0 (5)

for 3-D object modeling and recognition. The parameter vector
p = (p1, . . . , pq) is estimated from the visual data by mini-
mizing the mean-squared algebraic distance between the model
and the observed points. According to their definition, a quadric
surface will possess a total of 34 coefficients and can be used
to model fairly complex shapes. (In comparison, a superquadric
surface, which is an implicit surface, but not an algebraic surface,
has only 5 parameters.) Motion and deformation of the object
is modeled by an affine transformation between two algebraic
surfaces in that it preserves the surface degree.

Fourier decomposition. Staib and Ducan [90] proposed a
parametrically deformable model for boundary finding based
on the elliptic Fourier decomposition of a contour[

x(t)

y(t)

]
=
[

a0

c0

]
+
∞∑

k=1

[
ak bk

ck dk

] [
coskt
sinkt

]
(6)

The parameter vector to be recovered isp = (a0, c0,a1, b1, c1,

d1, . . .). The strength of their model stems from the combina-
tion of flexible constraints in the form of probabilistic models.
Boundary detection is formulated as an estimation problem us-
ing a MaximumA Posteriori(MAP) objective function. In [91],
the 2D model is extended to allow global shape parametrization
of smoothly deformable 3D objects. Surface detection is for-
mulated as an optimization problem, although no probabilistic
model is involved. Deng and Wilson [28] also used a Fourier
descriptor to represent the global shape of an object, but they
allow local forces to interact with the global boundary so that
local deformation is permissible.

4.2.2. Physically Based Models

As we have mentioned previously, parametric models are
inadequate for the analysis and representation of complex,
dynamic real-world objects. This deficiency is apparent in the
case of nonrigid motion, and has motivated recent research into
modeling methods based on computational physics. A number of
physically based models have been developed for image analy-
sis, includingsnakes, symmetry-seeking models, deformable su-
perquadrics, deformable templates, and modal models.

Thesnakemodel is perhaps the most well known and widely
used physically based model. A great deal of attention has been
devoted to the extension of the named prototype first proposed
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by Kasset al. [51]. The original snake model is a class of active
contours that evolve under the influence of external potentials
but are constrained by internal energies. When augmented by
Lagrangian mechanics, dynamic snakes with intuitive physical
behaviors are developed [97]. In [32], temporal context is expli-
citly incorporated to form a spatiotemporal solid called theactive
tube. Not surprising, the snake model can also be generalized to
deal with 3D images, as shown by Cohenet al. in [24, 25]. This
newly formed class of deformable surfaces, calledballoons, is
able to conform to image features and external forces in a way
similar to the original snake model. An evolution equation sim-
ilar to that in dynamicsnakeshas also been formulated. Cohen
et al.have successfully applied this model to the segmentation
of 3D MRI images as well as to establishing correspondence be-
tween a deformable surface and an anatomical atlas. McInerney
et al. [62] have addressed similar problems using a slightly dif-
ferent balloon model. Their focus, however, is on the numerical
solution of the dynamic deformable surface model.

A more recent extension tosnakemodels can be found in [95],
where the essential elements of physically based models and
probabilistic approaches are incorporated. A Bayesian frame-
work is introduced and the original energy-minimizing problem
is transformed to an MAP problem. To further exploit the power
of probabilistic modeling, Szeliskiet al. [95] have developed a
sequential estimation algorithm using the Kalman filter. Known
as theKalman snake, this dynamic system is able to integrate
nonstationary, noisy observations over time. It provides the flex-
ibility to design behaviors that may not be possible with purely
physically based models. Moreover, model parameters can be
derived from statistical models of sensors, rather than chosen
heuristically. It would be useful to generalize their development
to form Kalman balloonsthat are capable of tracking dynamic
surfaces.

A significant amount of work in left ventricle (LV) boundary
detection/tracking has been influenced by thesnakemodel. For
example, Ranganath [81] developed an automatic contour ex-
traction procedure using a specially configured active contour
model. Contour propagation between image slices (spatial con-
tinuity) and image phases (temporal continuity) is considered to
enhance the reliability of the extracted boundaries.

Kumar and Goldgof [56] also based their feature-tracking
algorithm on snake models. Spatiotemporal tracking of the
SPAMM grid in cardiac MR images is achieved by using multi-
ple parallel and vertical snakes. The intersections of snakes are
used as markers for establishing point correspondences. After
the correspondence problem is solved, a thin-plate spline model
is utilized to interpolate the local motion vectors.

Along a similar vein, Younget al. [102, 103] proposed de-
formable models to reconstruct 2-D and 3-D heart wall motion
from tagged MR images. Their approach appears to be very sim-
ilar to that reported by Kumar and Goldgof, except that the latter
used modified internal and image energies, while Younget al.
used the original snake formulation and minimization procedure
developed by Kasset al.Finite element method is employed to

model the geometry and deformation of the LV. Verification of
the proposed algorithms is achieved using a silicon gel phantom
undergoing controlled deformation.

The semi-automatic tag tracking algorithm proposed by
Kraitchmanet al. [54] represents a combination of template
matching and active contour modeling. Tag intersections are
first detected by computing the normalized cross-correlation
between an idealized template and the tagged MR image. An
“active spring mesh” structure is then formulated to track the
identified intersection points. The spring mesh has a different
internal energy from the original snake model since discrete
points, rather than lines or contours are being tracked. The im-
age energy is chosen to be the correlation image to attract the
intersection points to regions of high correlation.

Lobregt and Viergever [60] presented adiscretedynamic con-
tour model with special properties to avoid undesirable effects
such as shrinking and vertex clustering, which are common prob-
lems in existing active contour models. The internal energy of
the model depends on local contour curvature, while the external
energy is derived from image features. The resulting model is
both conceptually and computationally simple, and has proven
to be useful for segmenting MI images. Extension of their meth-
ods to 3D images, however, remains an open question.

The free-form deformable surface model proposed by
Delingetteet al. [26, 27] is conceptually similar to the active
contour model [51]. They model an object as a closed surface
that is deformed subject to attractive fields generated by input
data points and features. A fundamental conflict in shape repre-
sentation is that a modeling primitive should be general enough
to handle a wide variety of scenes, yet simple enough to be usable
for tasks such as recognition and manipulation. To balance these
conflicting requirements, the authors suggested a coarse/fine ap-
proach where features affect the global shape while data points
control its local shape.

Deformable templates, such as those employed by Yuille
et al.[104] to extract facial features, mark a blend of parametric
representation and physical-based methods. The template is de-
scribed by a parametrized geometrical model. The goodness of
fit between the deformable model and the image is measured by
the interaction energy, which contains contributions from vari-
ous image features. Optimal fit is obtained when the energy is
minimized. In [36], the authors improved the original model by
designing a more sophisticated cost functional.

Deformable superquadrics [98] are dynamic surface mod-
els with global and local deformation properties inherited from
superquadric ellipsoids and membrane splines. The combined
local/global representation is aimed at solving the conflicting
goals of shape reconstruction and recognition we addressed ear-
lier. Additional deformational degrees of freedom are gained
from the incorporation of global deformation such as tapering,
twisting, and bending [63]. By casting the fitting of time-varying
visual data into the Lagrangian mechanical framework, the equa-
tions of motion governing the behavior of the deformable su-
perquadrics can be developed. When augmented by Kalman



      

154 AGGARWAL ET AL.

filter theory [64], the dynamic system becomes a recursive shape
and motion estimator which employs the Lagrange equation
of dynamic surfaces as a system model. In [65], deformable
superquadrics that combine Kalman filter with additional con-
straints are employed to track articulated objects.

Inspired by modal analysis in linear mechanical systems,
Pentland [74] developed a system that is capable of automat-
ically recovering deformable part models based on the finite
element method (FEM). Nonrigid object behavior is described
bymodal dynamics, i.e., by the superposition of its natural strain
or vibration modes. By limiting the number of modes used in
the representation, the analysis of nonrigid motion can always
be transformed to an overconstrained problem. Later, the same
model combined with an extended Kalman filter is applied to
recover nonrigid motion and structure from contour [76] as well
as optical flow data [75]. A major limitation of the modal frame-
work is that objects must be described in term of the modes of
some prototype shape. Such a procedure implicitly imposes an
a priori parameterization upon the sensor data. It is thus more
suitable formodelingthan fortrackingpurposes. To address this
problem, Sclaroff and Pentland [85] recently developed a new
method that computes the object’s vibration modes directly from
the image data.

Nastar and Ayache [67] followed similar physics principles
and developed elastic models for nonrigid motion tracking. The
notable property of their model is that the governing dynamic
equations are linear and decoupled for each coordinate, regard-
less of the amplitude of deformation. Algorithmic complexity is
therefore significantly reduced. In [68], they have applied this
improved model to study the temporal evolution of 3D nonrigid
objects.

Perket al. [73] have developed a volumetric model for ana-
lyzing 3D motion of the LV from MRI-SPAMM images. This
new class of modeling primitive is physically motivated, and
is capable of describing complex volumetric motion of the LV,
such as the twisting deformation, using only a small number of
parameter functions. The values of the parameter functions are
estimated using the physics-based approach introduced in [65].

Shiet al.[88] proposed a model-based approach for the track-
ing myocardial deformation based oncontinuum mechanics. The
model is embeded in a finite element framework, whose strain–
stress relationship obeys the Hook’s law. Velocity information
(obtained within mid-well region of LV) and shape information
(obtained on the inner and outer boundaries of LV) are inte-
grated to provide a complete description of the elastic motion.
A feedback mechanism is incorporated to improve the accuracy
of motion estimation.

5. CONCLUSION

In this paper, we have reported the past developments on non-
rigid motion analysis in two categories,articulatedandelastic
motion. This work can be generally categorized as (1) methods
using noa priori shape models, and (2) model-based approaches.

Motion tracking assuming noa priori knowledge about the mo-
tion or object shape is necessary when dealing with an unknown
object. The difficulty of establishing feature correspondence is
the major obstacle to this type of approach. Researchers either
focus on high level processing, assuming that matching is known
a priori, or impose constraints on the object’s behavior to get
around the problem. Model-based approaches, which have the
advantage of knowing the approximate object shapes in advance,
simplify this problem or transform it into other tractable issues.
However, these methods are not applicable if knowledge of the
object shape is not available.

Certain success has been achieved in the study of the human
gait and the analysis of left ventricular motion using various
image analysis techniques, as described in this paper. Overall,
nonrigid motion analysis is still in its infancy. However, many
investigators have realized the importance of dealing with non-
rigidity in motion analysis. The applications of nonrigid motion
analysis extend from teleconferencing, gesture recognition, face
recognition, material deformation studies, biomedical applica-
tions, and geological formation studies to weather prediction and
image compression. We expect novel schemes will be presented
to deal with different types of nonrigid motion in the future.
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