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The present paper reviews recent developments in the compu- 
tation of  motion and  structure of objects in a scene from a 
sequence of images. We highl ight two distinct paradigms: i) the 
feature-based approach and  ii) optical f low based approach. The 
comparative merits/demerits o f  these approaches are discussed. 
The current status o f  research in these areas is reviewedand future 
research directions are indicated. 

I. INTRODUCTION 

The ability to discern objects, ascertain their motion, and 
navigate in three-dimensional space through the use of 
vision i s  almost universal among animals. Incorporating 
such vision in machines i s  ostensibly a straightforward task 
given the widespread availability of microcomputers, dig- 
itizing cards, and solid-state cameras. Although it i s  fairly 
easy and inexpensive to assemble a computer vision sys- 
tem, it has proved surprisingly difficult to achieve a vision 
capability in machines, even to a limited degree. This i s  not 
to imply that we are not using all sortsof vision systems and 
motion detectors in a variety of applications. However, the 
ease with which humans detect motion and navigate around 
objects, and the difficulty of duplicating these capabilities 
in machines have recently led to major efforts by computer 
engineers and scientists to understand vision in man and 
machine. These efforts are in addition to and perhaps com- 
plement current and earlier endeavors at understanding 
human vision and motion by psychologists and physiolo- 
gists. 

Broadly speaking, there are two groups of scientists 
studying vision. One group i s  studying humanlanimal vision 
with the goal of understanding the operation of biological 
vision systems including their limitations and diversity. The 
scientists in this group include neurophysiologists, psy- 
chophysicists, and physicians. The second group of sci- 
entists includes computer scientists and engineers con- 
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ducting research in computer vision with the objective of 
developing vision systems. Vision systems with the ability 
to navigate, recognize, and track objects and estimate their 
speed and direction are the ultimate goals of the latter 
research. The knowledge and results of research in neu- 
rophysiology and psychophysics have influenced the 
design of vision systems by engineers and scientists. At the 
same time, results in computer vision have provided a 
framework for modeling biological vision. Such cross-fer- 
tilization of ideas will continue to yield better models for 
biological and machine vision systems. 

There i s  a long l i s t  of applications motivating a strong 
interest in sensing, interpretation, and description of 
motion from a sequence or acollection of images. The auto- 
matic tracking and possible ticketing of speeding vehicles 
on a highway i s  of interest to traffic engineers and law 
enforcement officers. The automatic recognition, tracking, 
and possible destruction of targets is  of immense interest 
to the department of defense of every country. The com- 
putation, characterization, and understanding of human 
motion in dancing, athletics, and pilot training are impor- 
tant to several diverse disciplines. The analysis of scinti- 
graphic image sequences of the human heart i s  of interest 
in assessing motility of the heart in diagnosis and super- 
vision of patients after heart surgery. Satellite imagery pro- 
vides an opportunity for interpretation and prediction of 
atmospheric processes through the estimation of shape and 
motion parameters of atmospheric disturbances for the 
meteorologist. The bandwidth reduction achievable 
through the estimation of motion allows for compression 
of image sequences for efficient transmission. The above 
examples are indicative of the diversity of applications 
where the computation of motion from a sequence of 
images i s  of critical importance. 

This broad interest in the interpretation of motion from 
a sequence of images has been evident since the first work- 
shop on motion in Philadelphia in 1979 [I]. Since that work- 
shop, several additional meetings and special issues of var- 
ious journals have contributed to the exchange of ideas and 
the dissemination of results. In addition, there have been 
several sessions on motion and related issues at meetings 
such as the IEEE Computer Society Computer Vision and 
Pattern Recognition Conference and conferences of other 
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societies interested in vision. The list of workshops and spe- 
cial issues devoted exclusively to motion and time-varying 
imagery include three special issues [2]-[4], two books [5], 
[6], a NATOAdvanced Study lnstitute[q,anACM workshop 
[8], a European meeting on time-varying imagery [9], and a 
host of survery papers [IO]-[15]. The extent of the breadth 
and depth of interest is provided by the table of contents 
of the book published to document the proceedings of the 
NATO-AS1 [16]. However, this list is incomplete at best. The 
IEEE Computer Society workshop at Kiawah Island [17] and 
Second International Conference in Italy [I81 are indica- 
tions of the broad interest in motion at this time. The recent 
two-volume collection of papers in the reprint series [I91 
published by IEEE Computer Society includes a section on 
Image Sequence Analysis containing nine papers. The 
recent book edited by Martin and Aggarwal entitled Motion 
Understanding: Robot and Human Vision [20] gives eleven 
papers detailing recent developments in this area. 

The above brief chronology documents the contribu- 
tionsfrom acomputer vision perspective. It is not the inten- 
tion of the present review to slight the earlier pioneering 
works of psychologists and other scientists. In particular, 
the kinetic depth effect demonstrated by Wallach and 
O’Connell [21] through the use of wire frame objects, and 
similar effects shown by Gibson [22] in his translucent sheet 
experiments, Ullman [23] in his rotating cylinders experi- 
ment, and Joahannson [24]-[28] are important contribu- 
tions in the area of psychophysics of motion perception. 
In thesamevein, thecontributionsof Hubel and Wiesel[29] 
in demonstrating the existence of specialized cortical cells 
tuned to the detection of motion are seminal contributions 
in neurophysiology. The present review, however, is only 
aimed at the computer vision inspired contributions to the 
study of motion. A more balanced review of the recent con- 
tributions in both psychophysics of vision and machine 
vision is found in [20]. 

In this paper we do not present an exhaustive compen- 
dium of recent research in the computation of motion and 
structure from sequences of images; instead we list some 
of the important work done and provide a flavor of the 
approaches that have been developed. 

I I .  METHODOLOGIES FOR MOTION ESTIMATION 

The relative motion between objects in a scene and a 
camera, gives rise to the apparent motion of objects in a 
sequence of images. This motion may be characterized by 
observing the apparent motion of a discrete set of features 
or brightness patterns in the images. The objective of the 
analysis of a sequence of images is the derivation of the 
motion of the objects in the scene through the analysis of 
the motion of features or brightness patterns associated 
with objects in the sequence of images. 

Two distinct approaches have been developed for the 
computation of motion from image sequences. The first of 
these is based on extracting a set of relatively sparse, but 
highly discriminatory, two-dimensional features in the 
images corresponding to three-dimensional object fea- 
tures in the scence, such as corners, occluding boundaries 
of surfaces, and boundaries demarcating changes in sur- 
face reflectivity. Such points, lines and/or curves are 
extracted from each image. Inter-frame correspondence i s  
then established between these features. Constraints are 

formulated based on assumptions such as rigid body 
motion, i.e., the 3-D distance between two features on a 
rigid body remains the same after objectkamera motion. 
Such constraints usually result in a system of nonlinear 
equations.Theobserved displacement of the2-D imagefea- 
tures are used to solve these equations leading ultimately 
to the computation of motion parameters of objects in the 
scene. 

The other approach is based on computing the optic flow 
or the two-dimensional field of instantaneous velocities of 
brightness values (gray levels) in the image plane. Instead 
of considering temporal changes in image brightness val- 
ues in computing the optic flow field, it i s  possible to also 
consider temporal changes in values that are the result of 
applying various local operators such as contrast, entropy, 
and spatial derivatives to the image brightness values. In 
either case, a relatively dense flow field isestimated, usually 
at every pixel in the image. The optic flow is then used in 
conjuction with added constraints or information regard- 
ing the scene to compute the actual three-dimensional rel- 
ative velocities between scene objects and camera. 

A task that is closely related to the estimation of motion 
i s  thetaskof estimation of the structureof the imaged scene. 
In the case of the optic flow method, this consists of group- 
ing pixels corresponding to distinct objects into separate 
regions, i.e., segmenting the optic flow map, and then com- 
puting the three-dimensional coordinates of surface points 
in the scence corresponding to each pixel in the image at 
which theflow iscomputed. In thecaseofthe feature-based 
analysis, computing structure corresponds to forming 
groups of image features for each object in the scene and 
then computing the 3-D coordinates of each object feature 
associated with each image feature. 

Although structure may be computed independent of 
motion, e.g., via stereopsis, the former process can benefit 
by the estimated motion. Knowledge of motion parameters 
for featureslregions can aid segmentation of image fea- 
turedregions corresponding to distinct objects. In ste- 
reopsis, knowledge of object motion can facilitate estab- 
lishment of feature correspondence within a pair of stereo 
images, thus aiding the determination of structure. Image 
regions with different apparent 2-D motions can be con- 
sidered to correspond to distinct objects. Psychological 
research has collected enough evidence to support the 
belief that the process of establishing correspondence and 
the process of estimating structure and motion are closely 
interwoven in the human visual mechanism. Indeed, UII- 
man has shown that apparent motion is  a clue used by the 
human visual system for computing scene structure [6]. This 
close relationship between the estimation of structure and 
the estimation of motion has prompted many researchers 
to address both tasks as a combined problem. In this paper 
we discuss the combined task of computing structure and 
motion from image sequences. 

In the following sections we discuss in greater detail the 
fundamental principles underlying the two distinct meth- 
odologies for computing 3-D motion from apparent motion. 
The basic mathematical formulations are introduced and 
discussed. In Section Ill we discuss the feature-based 
method for estimation of motion from a sequence of mon- 
ocular images. In Section IV we discuss the optic flow 
method for sequences of monocular images. Section V dis- 
cusses the relative merits and demerits of these two 
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approaches. The two approaches outlined above allow for 
the estimation of motion without requiring that scene 
structure be known apriori. The use of stereopsis allows for 
the estimation of depth, i.e., the distance from the sensor 
to the objects. The additional information available greatly 
reduces the complexity of motion estimation. The variety 
of ways in which stereopsis can be used to facilitate the 
computation of motion is outlined in Section VI. Finally, 
Section VI1 concludes this paperwith afewclosing remarks. 

I I I .  
IMAGE SEQUENCES 

In this section, we discuss the feature-based approach to 
estimate motion from a sequence of images gathered by a 
singlecamera. A mathematical formulation is presented and 
variations of this formulation are discussed. The discussion 
focuses on the estimation of both motion and structure. No 
distinction i s  made between the situations where a) the 
camera is moving and imaged scene is stationary, b) camera 
is stationary while the imaged objects are in motion, or c) 
both camera and imaged objects are in motion. What is 
computed is the relative position and motion between the 
camera and the imaged scene. In the following discussion 
it is assumed that image features, such as points and lines, 
have been extracted from each image and inter-frame cor- 
respondence has already been established between the 
features. 

We present below three approaches to feature-based 
analysis of monocular image sequences. The first of these 
is the direct formulation in which rigid body motion is 
assumed. In this formulation the rigidity constraint i s  man- 
ifest in there being single rotation and translation matrices 
for all observables. In the second approach rigidityisexplic- 
itly invoked with the formulation being based on preserv- 
ing rigidity, e.g., preserving the angle between two inter- 
secting 3-D lines lying on a rigid object. These two schemes 
use two or three views to estimate structure and motion. 
A third approach consists of using a long sequence of mon- 
ocular images. A brief description of the salient features of 
each approach is presented. 

FEATURE-BASED MOTION ESTIMATION FROM MONOCULAR 

A. Direct Formulations 

An orthographic imaging model was used by Ullman [6], 
[23] to estimate the structure and motion of an object 
undergoing rigid motion. The position and motion of four 
noncoplanar points in spacewere recovered from threedis- 
tinct orthographic projections of these points. The for- 
mulation is as follows. Let O , A ,  6, and C be the four points. 
The orthographic projection of these points in three dis- 
tinct planes IIl, II2, II3 are given and the 3-D configuration 
of these points is  to be determined. A fixed coordinate sys- 
temwithorigin at Oischosen. Leta,b,c, bethevectorsfrom 
0 to A, B and C, respectively. Let each image have a coor- 
dinate system with its origin at the projection of 0, and its 
axesalong thedirectionspi,qi. Notethatp;and q,areorthog: 
onal unit vectors on IIi. Let the image coordinates of (A, 6, 
c) on ni be (xaryar ,  XblYbl, xclycl), and let ujj be the unit vector 
along the intersection of ni and IIj. 

The image coordinates are given by the dot products 

X,, = a’p;, Ya, = a’q;, X b ,  b’pi, 

Yb, = b.q;, Xcl C’P; ,  Yc, = C.q;, 

The unit vector uij lies on IIi which is spanned by @;, qi), 
hence 

u.. ,, = a I /Pi + PI/% where .I: + P,: = 1. 

The unit vector ujj also lies on I I j  which i s  spanned by 

uij = y,,p, + 61/qj, where Y’, + S’, = 1. 

@j,  qj ), hence 

From the latter two equations we obtain 

%/Pi + P1/4i = YqPj + 6,/Sj 

and taking the scalar product of this equation with a, b, and 
c we get: 

ai/xa, + Pi/Yai = Yi/Xa/ + 6i/Ya/ 

ailxbi + Pi/Ybr = ? ’ ~ , ~ b /  + 6i)Yb, 

“I/XCl + P I / Y C l  = YI,XC/ + 6l/Y,. 

These equations are linearly independent [6] and possess 
two solutions that are equal in magnitude but have oppo- 
site sign. Choosing one of these solutions, the vectors uii 
are determined. The distances dl = 11 u12 - uT3 11, d 2  = 11 u12 
- u23 11, and d3 = 1 1  u I 3  - ~ 2 3  I /  are then computed. When no 
two vectors uii are equal, then di  # 0 and a unique triangle 
with sides d l ,  d2, and d3 i s  specified. Consider the tetra- 
hedron formed by this triangle and the origin 0, with the 
vertices of the triangle being placed at unit distance from 
the origin 0. From the projections of A,  B,  and C on the 
three planes (images) a unique 3-D configuration is easily 
computed. In the degenerate case, i.e., when two of the uii 
are identical, straightforward trigonometric considerations 
provide recovery of the structure and motion of the body 

Although the parallel projection model i s  adequate in 
some situations it is  not appropriate for most real-world 
applications which mandate the use of perspective pro- 
jection. The use of perspective transformation substantially 
increases the complexityof the problem. Roach and Aggar- 
wal [30], [31] were among the first to compute structure and 
motion from images via the perspective imaging transfor- 
mation. A scenario consisting of a static scene and a moving 
camera was assumed. The goal was to investigate whether 
it would be possible to determine the position of the points 
in space and the movement (translation and rotation) of the 
camera. 

The equations that relate the three-dimensional coor- 
dinates of a point (X, Y, Z )  and its image plane coordinates 
(x, y) are 

~ 3 1 .  

Here F is the focal length, (Xo,  Yo, Z,) i s  the projection cen- 
ter and all, a,*,  . . . , a,, are functions of (8, @, *), the ori- 
entation of the camera with respect to the global reference 
system. 

Roach and Aggarwal showed that five points in two views 
are needed to recover these parameters [30], [31]. They 
related the number of points and the number of equations 
available for the solution of 3-D coordinates and motion 
parameters as follows: The global coordinates of each point 
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are unknown so the five points produce 15 variables. The 
camera position and orientation parameters (Xo ,  Yo, Zo, 8, 
@,and 9) in twoviewscontributeanother 12variablesyield- 
ing a total of 27variables. Each 3-D point produces two pro- 
jection equations per camera position thus forming a total 
of 20 nonlinear equations. To make the number of equa- 
tions equal the number of unknowns, seven variables must 
be known or specified apriori. This i s  achieved by choosing 
the six camera parameters of the first view to be zero and 
setting the Z-component of one of the five points to an arbi- 
trary positive constant to fix the scaling factor. The reason 
for fixing one variable as the scaling constant is that under 
the given camera/object constraints the information 
embedded in every image sequence i s  inherently insuffi- 
cient for determining the correct scale. For example, the 
observed projected motion of an object moving in space 
can be reproduced by another object which is twice as large, 
twice far away from the camera, translating twice as fast, 
and rotating with the same speed around an axis of the same 
orientation as the former object. In general, the informa- 
tion of the absolute distance of the object from the viewer 
is usually lost in the image formation process. Therefore, 
arbitrarily setting the scale i s  not unreasonable in finding 
the solution for the structure and motion parameters. 

An iterative finite difference Levenberg-Marquardt algo- 
rithm was used to solve these 18 nonlinear equations (after 
fixingthe scale factortwoof the20 nonlinearequations have 
no unknown variables in them). For noise-free simulations, 
the methods typically converged to the correct answer 
within 15 seconds on a Cyber 170/50 and hence are rea- 
sonably efficient. If noise i s  introduced into the point posi- 
tions in the image plane, a considerably overdetermined 
system of equations i s  needed to attain good accuracy of 
the results.Twoviewsof 12oreven 15points,orthreeviews 
of seven or eight points are usually needed in the noisy 
cases. 

Unlike Roach and Aggarwal [30], [31] who solved the 
motion parameters through a single system of equations 
thus creating a large search space, Nagel [32] proposed a 
techniquewhich reduces the dimension of the search space 
through the elimination of unknown variables. The impor- 
tant observation made by Nagel was that the translation 
vector can be eliminated and the rotation matrix can be 
solved separately. A rotation matrix i s  completely specified 
by three parameters-namely the orientation of the rota- 
tion axis and the rotation angle around this axis. It i s  shown 
that if measurements of five points in two views are avail- 
able, then threeequationscan bewritten and thethree rota- 
tion parameters can be solved for separatelyfrom the trans- 
lation parameters. The distance of the configuration of 
points from theviewer i s  arbitrarilyfixed and thetranslation 
vector can then be determined. 

Tsai and Huang [33]-[35] proposed a method to  find the 
motion of a planar surface patch from 2-D perspectiveviews. 
The algorithms consists of two steps: First, a set of eight 
"pure parameters" i s  defined. These parameters can be 
determined uniquelyfrom two successive image frames by 
solving a set of linear equations. Then, the actual motion 
parameters are determined from these eight "pure param- 
eters" by solving a sixth-order polynomial. 

By exploiting the constraints of projective geometry and 
rigid motion, equations can be written to relate the coor- 
dinates of image points in the two frames for points on a 

planar surface patch AX + BY + CZ = 1, where A, B ,  and 
C are the structure parameters. The mapping from the 
(x ,  y) space to the (x ' ,  y') space (from one image to  the next 
image) i s  given by 

x'  = a4x + a,y + a6 
a7x + a,y + 1 

y' = a,x + a,y + a3 
a7x + a,y + 1 

where, a? through a8 are the eight "pure parameters" and 
can be expressed in terms of the focal length, the structure 
parameters (A, B ,  C ) ,  and the motion parameters Nx, Ny, N,, 
8, Tx, TY and T,(N specifies the rotation axis, 8 i s  the rota- 
tional angle, and Tis the translational vector). For a partic- 
ular set of pure parameters, the above equation represents 
a mapping from (x ,  y) space to  (x', y') space. A set of linear 
equations is solved for these eight pure parameters. 

After the eight pure parameters are obtained, the struc- 
ture and motion parameters can be determined. Here, the 
Z component of the translation vector i s  arbitrarily chosen 
to fix the scale. After a series of manipulations, it is possible 
to get a sixth-order polynomial equation in terms of only 
one of the variables T i  = T,/T,. T i  i s  solved first and then 
all the remaining structure and motion parameters can be 
easily obtained. Although potentially six real roots may 
result from solving a sixth-order polynomial, the authors 
reported that aside from a scale factor for the translation 
parameters, the number of real solutions never exceeded 
two in their simulation. 

Later, Tsai and Huang [36] investigated the problem of a 
curved surface patch in motion. Two main results were 
established concerning the existence and uniqueness of 
the solutions. An E matrix was specified as E = TR, where 
Tis the translation and R i s  the rotation. Given the image 
correspondences of eight object points in general posi- 
tions, the E matrix can be determined uniquely by solving 
eight linear equations. Furthermore, the actual 3-D motion 
parameters can be determined uniquely given E, and can 
be computed by taking the singular value decomposition 
of €without having to solve nonlinear equations. Detailed 
proofs of these claims are presented by the authors [36]. 
Although the approach results in the solution of a set of 
linear equations, the system i s  highly sensitive to noise and 
especially to perturbations of image coordinates. Longuet- 
Higgins [37], [38] worked independently to obtain results 
similar to those described above. He derived the E matrix 
and presented a method to  recover R and T from E using 
tensor and vector analysis. 

Extensions of the above approaches were proposed by 
several researchers [39]-[43]. One limitation of the 
approaches developed by Tsai and Huang [36] and Longuet- 
Higgins [37] is  the requirement of a priori knowledge 
regarding nonzero translation. Zhuang and Haralick [39]- 
[41] havedevelopedan algorithmwhichovercomesthis lim- 
itation. Zhuang and Haralick do require that the observed 
object points do not lie on a specific quadratic surface pass- 
ing through the origin. Faugeras, Lustman and Toscani [42] 
and Nagel [43] reformulated the problem in more robust 
manners as least-mean-squared error minimization prob- 
lems. 

The above approaches used 3-D points and their projec- 
tions on the image planes as observables in formulating the 
problem. An alternative approach is to use 3-D lines and 
their projections as observables. When lines are used as 
features, two views are no longer sufficient and a minimum 
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of three views are required. This i s  due to the fact that 3-D 
lines possess an additional degree of freedom when com- 
pared to 3-D points. In other words, one can slide a 3-D line 
along itself and obtain the same line. We present below an 
overview of some techniques that use lines as features in 
the estimation of structure and motion. 

Yen and Huang [44], [45] have proposed an iterative 
method based on spherical projection and on the obser- 
vation of seven line correspondences in three views for the 
case of general motion between views. Liu and Huang [46], 
[47l have used line correspondences in formulations anal- 
ogous to the methods outlined above. They decompose 
rigid body motion into first a rotation around an axis 
through the origin and then a translation. For the case of 
pure rotation, two line correspondences over two frames 
are sufficient to determine the rotation matrix. The result- 
ing nonlinear equations are solved iteratively. For the case 
of pure translation, five line correspondences over three 
frames produce a system of linear equations which can be 
solved to determine the translation. For the general case, 
Liu and Huang use six linecorrespondences in three frames. 
The rotation matrix is first determined and then the trans- 
lation matrix is computed. Simulations of the iterative algo- 
rithm on synthesized data show that the approach is highly 
sensitive to noise and initial estimates. Moreover, esti- 
mation of the translation vector is very sensitive to errors 
in estimation of rotation. The algorithm has not been tested 
on real data. 

A more robust formulation of motion estimation using 
line correspondences, which incorporates the effect of 
noise, is due to Faugeras, Lustman and Torscani [42]. An 
extended Kalman filtering approach is followed in solving 
the nonlinear equations for a"best" estimate of the motion 
parameters. The "best" estimate is  defined to be one that 
minimizesan expression that involvesthe measurables, the 
unknowns, and partial derivatives of the nonlinear equa- 
tion that relates the unknowns to the measurables. The 
measurables for each 3-D line consist of three vectors, one 
for each of the three image planes. Each vector corresponds 
to the unit normal of the plane containing the projection 
of the 3-D line and the center of projection for that image 
plane. The unknowns consist of the rotation parameters 
that relate the positions of the three image planes. After 
solving for the rotation, the translation is computed via lin- 
ear equations. The structure of the object can then be com- 
puted viaeithera least-squares techniqueor viathe Kalman 
filtering approach. Significant improvement was reported 
in sensitivity to noise and initial estimates. 

Implicit in the above discussion was the assumption that 
the scene contained a single rigid object. Feature-based 
motion analysis has also been applied to scenes containing 
multiple rigid and jointed objects. Webb and Aggarwal[48] 
have presented a method for recovering the 3-D structure 
of such scenes under orthographic projection. The fixed- 
axis assumption is  adopted to interpret images of moving 
objects. The fixed-axis assumption asserts that every rigid 
object movement consists of a translation plus a rotation 
about an axis which is fixed in direction for a short period 
of time. It is shown that, under the fixed-axis assumption, 
selecting any point on a rigid moving object as the origin 
of a coordinate system causes the other points to trace out 
circles in planes normal to the fixed-axis within that coor- 
dinate system. Under parallel projection, with the selected 

point projecting to the image origin, these circles project 
into ellipses. The structure of the rigid object can be 
recovered to within a reflection by finding the equations 
describing the ellipses. Furthermore, it i s  shown that the 
lengthsofthe long and short axesof an ellipseare functions 
of the position of the point in space. The position of each 
point in space (up to a reflection about the image plane) can 
then be recovered provided that the fixed axis of rotation 
is not parallel or perpendicular to the image plane. 

A jointed object is an object made upof a number of rigid 
parts which cannot bend or twist. If the jointed object still 
moves in a way such that the fixed-axis assumption holds 
for each rigid part, then the motion and structure of the 
jointed object can be recovered. It is assumed that the rigid 
parts are connected by joints identified since they satisfy 
two sets of motion constraints. If the joints are not visible, 
they cap be found by solving a system of linear equations. 
The joints can then be used to eliminate some reflections 
and thus the number of possible interpretations of struc- 
ture is redused. Finally, the 3-D motion of each object is 
reconstructed. 

B. Explicit Use of Rigidity 

The assumption of rigid body was implicitly used in the 
aboveformulations. We outline below a typical formulation 
in which the constraint of rigid body motion is  explicitly 
invoked [49]. We discuss the case where five points in two 
views are used as the observables. As in the above discus- 
sion, the relative positions of the cameras are unknown, 
and the correspondence between points in the two views 
is assumed known. 

The two central projection imaging systems are shown 
in Fig. 1. C, and C, are the centers of projection and lI and 

Fig. 1. Imaging geometry for the two views. P, is the 3-D 
point, p, and q, are the images of Pon the two image planes. 

/*are the image planes. A point f, in space with coordinates 
(XI, VI,  Zl,) in SI and (U,, VI, W,) in S2 i s  imaged asp, on I, and 
q, on /*. The objective of the analysis is to derive the struc- 
ture of the points and the transformation between thecoor- 
dinate systems, given the imagecoordinatesof theobserved 
points in the two imaging coordinate systems. 

Because f, i s  on line Clp, (refer to Fig. I), there exists a real 
number A, > 1 such that 

XI = x,x,, v, = x,y,, z, = (1 - AJf,  

where (x,, y,) are the coordinates of p, in the /,-image coor- 
dinate system, and f l  is the distance from C1 to the image 
plane. Similarly, f, i s  on line C2q, and if (ul, v,) are the coor- 
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dinates of q, in the 1, coordinate system then there exists 
y, > 1 such that 

U, = y,u,, VI = y,v,, w, = (1 - yJf,. 

The squared distance between points P, and P, expressed 
in S1 is therefore 

d;(S,) = ( X I  - XJ2 + (VI  - Y/)* + (Z, - Z/12 

or 

Similarly, the squared distance between P, and P, expressed 
in S2 is 

Now, the principle of conservation of distance allows us to 
write (assuming, of course, identical units of measurement 
in S, and S,) 

or 

= ( y , ~ ,  - r,u,)’ + (y,~, - y,v,I2 + (7, - -y,)2f;. (3.1) 

It may be seen that each point P, contributes two 
unknowns, XI and y,, and each pair of points (f,, P I )  gives 
one second order equation (3.1). Therefore, 5 points yield 
10 equations and 10 unknowns. Again, fixing the scale arbi- 
trarily, we end up with a system of 10 equations in 9 
unknowns. Note that each equation involves only 4 of the 
unknowns. Since distances between points define struc- 
ture only up to a reflection in space, the solution of system 
(3.1) based on these distances i s  also subject to this uncer- 
tainty. System (3.1), although simple, is nevertheless non- 
linear. Experimental results using existing iterative numer- 
ical methods do indicate, however, that the solution is well 
behaved [49]. 

When the position of the points has been computed, 
determining the relative position of the cameras becomes 
a simple matter. Indeed, take 4 noncoplanar points (from 
the 5 observed points in space) and call Al and A, the matri- 
ces of homogeneous coordinates of these in S, and S,, 
respectively. Then if M i s  the transformation matrix (in 
homogeneous coordinate form) that takes S, onto S2  we 
have 

A2 = AIM. (3.2) 

Since the 4 points are not coplanar, (3.2) can be solved 
for M. Now if we decompose motion M into i) a rotation 
throughangleeabout anaxisthrough theoriginwithdirec- 
tion cosines n,, n,, n3, followed by ii) a translation (tl, f2, t3) 
and if it is written as 

M =  

then one can show that 

cos e = (a ,  + a5 + a9 - 1)/2; sin 8 = (a6 - a8Y2nq 

n, = J(al - cos e)/(i - cos e) 
n2 = (a2 + a,) (1 - cos W2nl 

n3 = (a ,  + a,) (1 - cos 8)/2nl .  

The algorithm has been shown to perform well on both 
real and synthetic data, and these results are presented in 
WI. 

The use of lines as observables in an approach similar to 
the one outlined above has also been attempted by Mitiche, 
Seida and Aggarwal [50] who used the principle of angular 
invariance between 3-D lines on a rigid body undergoing 
motion. In their method the orientation of lines is first 
recovered, then the rotational component is computed, and 
finally, the translation i s  recovered. The observation of four 
lines in three views allows for the determination of struc- 
ture and motion parameters. 

The use of line correspondences has the advantage over 
the use of point correspondences in that extraction of lines 
in images is less sensitive to noise than extraction of points. 
Also, it is easier to match line segments between images 
than it is to match points. 

It i s  possible to use both lines and points concomitantly 
in formulating the task. In the case of combined point and 
line correspondences, four points and a line in two views 
are sufficient to compute the structure of the scene as well 
as the displacement between views as described by Aggar- 
wal and Wang [51]. 

The following observations may be made based on the 
current literatu re: 

1) Using points or lines, or combination of points and 
lines for the computation of structure and motion 
usually gives rise to nonlinear equations. 

2) The computation based upon minimum number of 
points or lines is usually more sensitive to noise per- 
turbations. 

3) In general, alternate formulations may give rise to dif- 
ferent sufficiency conditions regarding minimum 
number of pointsand lines requiredfor solvingstruc- 
ture and motion. 

C. Using Extended Sequences of Monocular Images 

The approaches outlined above attempt to recover struc- 
ture and motion from a limited number of views of the 
scene, typically 3 or 4 views. We discuss below some tech- 
niques that use long sequences of monocular images to 
recover structure and motion. 

The first of these is the incremental approach which 
allows for deviations from rigid body motion. This differs 
from the approaches outlined above which assumed that 
the object being imaged undergoes rigid body motion. Psy- 
chophysical studies have shown that the human visual sys- 
tem can copewith less than strict rigidity[52], [26], [27J. These 
studies prompted Ullman to devise an algorithm that 
recovers the 3-D structure of viewed objects in an incre- 
mental manner using several views of an object in motion 
[52]. The performance of the algorithm is argued to be com- 
parable to that of the human visual system because it pos- 
sesses the following characteristics [52]: 
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1) At each instant there exists an estimate of the 3-D 
structure of the viewed object. The internal model 
M(t) of the viewed structure at time t may be initially 
crudeand inaccurate, and may be influenced by static 
sources of 3-D information. 

2) The recovery process prefers rigid transformations. 
3) It i s  able to integrate information from an extended 

viewing period. 
4) The recovery process tolerates deviations from ri- 

gidity. 
5) It eventually recovers the correct 3-D structure, or a 

close approximation to it. 

A parallel projection system is used. M(t) consists of a set 
of 3-D coordinates (XI, Y,, Z,) where (X,, Z,) are the observed 
image plane coordinates of a point and Y, is the depth. The 
estimation of structure therefore consists of finding Y,. An 
initial set of values is chosen for the Y,. Consider the sit- 
uation at time t’. Let (x,, y,, z,) be the new structure of the 
corresponding points. The task i s  to find y, while minimiz- 
ing deviations from rigidity. The deviation from rigidity i s  
defined as follows. Let L, denote the distance between 
points i and j at time t .  Let L; denote the distance between 
points i and j at time t’. Under rigid motion L, should be 
equal to Lb. The deviation in rigidity i s  expressed as 

U,, - L,;Y 
E = D,, where D ,  = ~ r 3  

’I 

and the summation is for all i, j .  
Two modifications to the basic scheme were explored 

[52]. These included using different metrics for measuring 
the deviation from rigidity and allowing for a correction in 
the initial model M(t). Simulations using syntheticdatawere 
conducted. Results indicate that the model does arrive at 
a good approximation to the 3-D structure after several 
views, but does not converge to the exact solution. Also, 
the solution is unique upto a mirror reflection. The mod- 
ification involvingaflexible model quicklyarrived at agood 
approximation with a few views but with additional views 
the estimated structure oscillated about the correct solu- 
tion. An analysis of the convergence properties of this algo- 
rithm has also been carried out by Hildreth and Grzywacz 
[53]. They have also suggested a continuous formulation of 
the above approach wherein instantaneous velocities of the 
points are used instead of point positions. 

Although it i s  argued that such aformulation is warranted 
when arbitrarily close frames are used, the results of Hil- 
dreth and Grzywacz indicate that local velocity information 
i s  insufficient to solve the problem, even when the object 
i s  viewed over an extended period. The major limitation of 
the incremental approach discussed above is that it per- 
forms well only when objects rotate about a fixed axis. In 
addition, orthographic projection is not generally valid. The 
approach does however i I I u strate t he importance of mot ion 
in the perception of structure. 

Broidaand Chellappa[54] consider thecaseof a rigid body 
undergoing constant translational and rotational motion. 
This assumption allowsfor aformulation in which the num- 
ber of unknown model parameters does not increase with 
the increase in the number of image frames. A two-dimen- 
sional object undergoing one-dimensional motion is 
assumed. They also assume that the object structure i s  
known and attempt to recover the motion parameters. A 

Kalman filter i s  employed for recursive estimation of the 
motion parameters. The object is assumed to be transpar- 
ent so that feature points are always visible and corre- 
spondence i s  assumed to have been established a priori. 
The unknown model parameters are represented as a vec- 
tor: 

[xc xc zc zc p l  p2 WIT 

where, (xc, zc) i s  the location of the center of mass of the 
object, (xc, zc) i s  the object translational motion, p l  and p2 
are unknown phase angles of moment arms rl and r2 that 
connect the two feature points to the center of mass. Here 
rl and r2Irl i s  assumed known. The differential equation 
describing unforced motion iswritten in terms of the above 
vector as: 

X(t) = [XC 0 xc 0 w w O l T  

with arbitrary initial conditions xc(t), zc(t), pl(t), and p2M. 
This system yields the following state equation: 

x(k + 1) = F(k)  x(k) 

where 

x(k)  = [xc(k) xc(k) zc(k) zc(k) pl(k)  p2(k) w(k)lT and 

r l T O O O O O  1 
0 1 0 0 0 0 0  

0 0 1 7 0 0 0  

F ( k ) =  0 0 0 1 0  0 0 .  1;; ;;;; 1 
Here, 7 i s  the time interval between successive images. The 
measurement model i s  given by 

X I  = L[xc + r l  cos @l)l/[zc + r l  sin (PI)] = hl[x(k)l 

X2 = L[xc + r2 cos (p2)]/[zc + r2 sin (~211 = h2[x(k)l 

where X I  and X2 are the images of the two feature points 
and L is the focal length of the sensor. The vector repre- 
sentation i s  given by 

X(k )  = [Xl(k) X2(k)lT = h[x(k)l + n(k) 

where h[x] = [h l  (x) h2(x)] and n(k) is the term corresponding 
to zero mean, Gaussian, spatially correlated, and tempo- 
rally white noise. 

The above formulation i s  then used to design an iterated 
extended linear Kalman filter that solves for the state vari- 
ables-in this case the translation and rotation parameters. 
The performance of the algorithms on Monte Carlo sim- 
ulations are discussed in [54], while extensions of this 
approach are presented in [551. 

Weng, Huang and Ahuja [56] have proposed a method of 
characterizing rigid body motion from long monocular 
image sequences, i.e., over extended viewing periods. Their 
approach involves first extracting structure and motion 
parameters with two views of 8 points [33]-[36] and then 
computing the trajectoryof the rotation center which i s  the 
center of mass or some fixed point of the object. They 
assume that the angular momentum of the object is locally 
constant and the object possesses an axis of symmetry. They 
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argue that if motion is smooth and the time interval covered 
by the model i s  relatively short, then the trajectory of the 
rotation center can be approximated by a polynomial. The 
developed model i s  applied to subsequences of images to  
estimate the trajectory and predict the new locations of 
object points. The main characteristic of interest is  the exis- 
tence of precessional motion and the parameters thereof. 
A least-squares method i s  adopted to  compute the param- 
eters. The authors present a detailed analysis of the rela- 
tionship between the parameters of precessional motion 
and discrete two-view motion. The simulations discussed, 
however, deal only with 3-D point sets and no testing has 
been conducted using real data extracted from monocular 
image sequences. 

D. The Correspondence Problem 

In the above discussions it is repeatedly assumed that 
correspondence was available between features extracted 
from one image in asequenceof images and those extracted 
from the next image. The task of establishing and main- 
taining such correspondence is, however, nontrivial. The 
ambiguity i s  aggravated by the effects of occlusion which 
cause features to appear or disappear and also give rise to 
"false" features. The development of robust techniques to  
solve the correspondence problem is  an active area of 
research that i s  still in i t s  infancy. We present a brief 
description of a few of the approaches developed. The 
problem of finding correspondence i s  common to other 
areas of computer vision such as stereoscopy and optic flow. 
Some of the techniques developed for solving the corre- 
spondence problem in these other areas can be applied to 
the feature-based analysis of monocular images as well, and 
vice versa. 

Aggarwal et al. [57] have classified correspondence pro- 
cesses into two categories: those that are based on iconic 
models and those that are based on structural models. The 
former class consist of templates extracted from the first 
frame which are then detected in the second and subse- 
quent frames. The second approach consists of extracting 
tokenswith a numberofattributesfrom the first image,and 
using domain constraints and structural models to match 
these tokens with those extracted from the second and sub- 
sequent images. The latter approach i s  computationally 
more expensive but also more robust than the former. 

Sethi and Jain [58] describe a method for finding corre- 
spondence and maintaining correspondence between fea- 
ture points extracted from a long sequence of monocular 
images. They present algorithms based on preserving the 
smoothness of velocity changes. The iterative optimization 
algorithms search for an optimum set of trajectories for fea- 
ture points in a sequence of images based on constraints 
on the direction and magnitude of change in motion. A 
hypothesize and test approach is  also proposed to handle 
occlusion. This method hypothesizes occlusion if the num- 
ber of feature points detected in a frame i s  less than that 
detected in two or more preceeding or succeeding frames. 
Interpolating the missing point position using the pre- 
ceeding two frames and testing this with the subsequent 
two frames verifies the existence of occlusion. Experiments 
with manually extracted features illustrate that the approach 
i s  able to deal with limited occlusion. The problem of auto- 
mated extraction of features, however, has not been 
addressed by the authors. 

Fang and Huang[59] have presented experimental results 
of motion parameter estimation using a modified version 
of an algorithm initially developed by Ranade and Rosen- 
feld [60]. The relaxation algorithm i s  modified by incor- 
porating different scales to allow for large scale changes in 
the images (due to large translations in depth). Another 
relaxation technique for establishing correspondence i s  
due to Kim and Aggarwal [61]-[63] who have applied their 
technique to matching features in stereo imagery as well 
as for matching 3-D features in depth maps. Barnard and 
Thompson [64] have proposed an iterative relaxation label- 
ing technique for matching features in stereo imagery based 
on smoothness in change of depth. This method may be 
applied to matching features in two monocular images 
based on smoothness in spatial displacement of image fea- 
tures. Prager and Arbib [65] describe a technique similar to 
Barnard and Thompson but have included an additional 
temporal constraint on feature displacements. Many other 
approaches to matching image features can be found in 
recent literature, for example see [66]-[68]. 

In this section we discussed the feature-based extraction 
of motion from monocular image sequences. It was 
assumed that image features, such as points and lines, had 
been extracted from each image and inter-frame corre- 
spondence had been established between them. Three 
approaches to the problem were discussed: the direct for- 
mulation method where rigid body motion i s  implicitly 
used, a formulation in which rigidity i s  explicitly invoked, 
and the third approach using long sequencesof monocular 
images. 

IV. OPTIC FLOW BASED MOTION ESTIMATION 

In this section we present approaches in which the 
instantaneous changes in brightness values in the image 
are analyzed to yield a dense velocity map called image flow 
or optic flow. The three-dimensional motion and structure 
parameters are then computed based on various assump- 
tions and/or additional information. No correspondence 
between features in successive images is required. Theoptic 
flow techniques rely on local spatial and temporal deriv- 
atives of image brightness values. This approach, as will be 
evident from the following discussion, is distinct from the 
feature-based analysis of monocular image sequences dis- 
cussed in the previous section where 1) a relatively sparse 
set of two-dimensional features is extracted from the 
images, 2) inter-frame correspondence i s  established 
between these features, 3) constraints are formulated based 
on assumptions such as rigid body motion, and 4) the 
observed displacement of the 2-D image features are used 
to solve these equations to produce 3-D structure and 
motion estimates. 

The relative motion of a scene with respect to the viewer 
gives rise to  a distribution of velocities on the image plane. 
This phenomenon manifests itself as temporal change in 
brightness values (gray levels) in the image plane. The image 
velocities are, in general, functions of the motion of viewed 
objects relative to the camera, objects' locations in 3-D 
space, and 3-D structure of the objects. The recovery of the 
3-D motion and structure information from the sequence 
of monocular images can be decomposed into two steps: 
1) compute image plane velocities from changes in image 
intensity values, and 2) use optic flow to  compute 3-D 
motion and structure. We discuss below some basic for- 
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mulations of these two problems and outline the salient 
features in solutions to these two tasks. 

A. Computing Optic Now 

Let g(x ,  y ,  t)  be the image intensity at point (x ,  y) in the 
image at time t .  With the assumption that the intensity i s  
the same at time t + A t  for the point (x  + Ax, y + Ay)  of the 
image, we have 

g(x  + Ax, y + AX,  t + At)  = g(x ,  y ,  t)  (4.1) 

where At,  Ax, and A y  are small. Approximating the left-hand 
side by a Taylor series 

g(x  + AX,  y + Ay,  t + At)  = g(x ,  y, t )  + g,Ax 

+ g p y  + g , A t  + higher order terms. (4.2) 

Ignoring the higher order terms in (4.2), using (4.1) in (4.2) 
and taking the limit as At  -, 0 

(4.3) 

In this equation, the partial derivatives g,, g,, and g, are 
estimated from the image; U = dx /d t  and v = d y / d t  are the 
velocitycomponents in the directions xand y ,  respectively, 
associated with the point (x ,  y ) .  The collection of such veloc- 
ity vectors for the entire image constitutes the optic flow 
for the image. 

Equation (4.3) embodies two unknowns U and v, and is 
not sufficient by itself to specify the optical flow uniquely. 
Itdoesconstrain thesolution. It i s  possibletocomputeopti- 
cal flow for images using the optical flow constraint equa- 
tion together with additional assumptions. Popular 
assumptions include one of the following: 

a) optical flow is smooth and neighboring points have 
similar velocities, 

b) optical flow is constant over an entire segment of the 
image, 

c) optical flow i s  the result of restricted motion, for 
example, planar motion. 

One such constraint i s  the smoothness constraint, i.e., 
motion field varies smoothly in most parts of the image[69]- 
[72]. Horn and Schunck[69] imposed thisconstraint by min- 
imizing the error in optic flow expressed as: 

E2(x, y )  = (error in (4.3)) + X2 (deviation from smoothness) 

g,u + gyv + g, = 0. 

= @,U + gyv + g,)2 + X'{(uZ + U$ + (4 + I$} 
(4.4) 

where X i s  a constant. The task i s  to find U and v so as to 
minimize R in the following 

R = 1 s {@xu + gyv + g,Y 

+ X2[(u; + U$ + (4 + I$)]} d x  d y .  (4.5) 

The integral equation may be solved by methods of cal- 
culus of variation. Differentiating (4.5) with respect to U and 
vand equating aWau and M B v t o  zero (for minimum error 
R), and writing (uf + U$ = U - U,,,, and (4 + .'y) = v - v,,,, 
we get the following: 

U = uave - g,P/D, v = v,,, - g,P/D (4.6) 

where 

P = (gXua,, + gYvave + g,), and D = X2 + gt + g;. 

Equation (4.6) may be solved iteratively, i.e., obtain u(t), v ( t )  
using uave(t - I), vaV,(t - 1). 

Horn and Schunck show that the iterative method con- 
verges when the optic flow is static, i.e., when the velocity 
vectors do not change with time, e.g., a sphere rotating 
about a stationaryaxis. When thiscondition isviolated, e.g., 
when an object translates in front of a stationary back- 
ground, there exist boundaries where local smoothness of 
optic flow wil l not hold. If the boundaries can be detected 
thenthetechniquemay belimitedtosmooth regions. Some 
techniques for determining such boundaries are discussed 
by Schunck [73]. 

The first-order approximation of (4.2) i s  unsatisfactoryfor 
edges and corners in the image [74]. First-and second-order 
derivatives of the Taylor series expansion of (4.2) were used 
by Snyder et al. [75] who obtained a single nonlinear equa- 
tion in the two unknowns U and v. Prazdny [76] used the 
approach suggested by Snyder et al. [75] to solve the prob- 
lem whereonly pure translation of the sensorwas involved. 
Prazdnyfurther assumes that the Focus of Expansion (FOE)' 
of image flow is assumed known and then solves for the 
magnitude of the image flow. 

Yachida [77l extended Horn and Schunck's iterative 
method discussed above [69] for computing optic flow. The 
smoothness constraint considered not only a spatial neigh- 
borhood within the frame but also a temporal neighbor- 
hood, i.e., areas in the preceeding and succeeding frames. 

In order to devise additional constraints to solve the 
image flow equation (4.3) Nagel [74], [78] has posed specific 
conditions on local gray value distributions and has pre- 
sented an operator (gray value corner detector) that detects 
locations in the image that satisfy these conditions. He 
develops the Taylor series of (4.2) up to second-order terms. 
Minimizing an error functional results in a system of two 
nonlinear equations in U and v. These yield a closed form 
solution for the optic flow at the image locations detected 
bythe corner detector. Nagel and Enkelmann [79] use these 
values as initial estimates in an iterative algorithm that 
extends the solution of the nonlinear system of equations 
into image areas surrounding the gray value corner. Nagel 
[80] hasalso proposed a modification of Horn and Schunck's 
smoothness criterion to take into consideration occluding 
edges. Nagel introduced a weight matrix which depends on 
gray level changes in such a way that smoothness require- 
ment is retained only for the optical flow component which 
is perpendicular to strong gray value transitions. 

Haralick and Lee [81] use (4.3) in conjunction with the 
requirement thatthefirstderivativesof thegrayvaluestruc- 
ture that has been displaced in the image due to object 
motion must remain the same. This yields three additional 
equations: 

gxxu + gxyv + gx, = 0 

gtdJ + gryv + g,, = 0. (4.7) 

Equations (4.7) and (4.3) form an overdetermined system 
of four linear equations in U and v. Tretiak and Pastor [82] 

'The Focus of Expansion (FOE) is defined as the intersection of 
theaxis of camera translation with the image plane, when the inter- 
section occurs on the positive half of the axis. When this inter- 
section lies on the negative half of theaxisof translation, it is termed 
the Focus of Contraction (FOC). 
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also independently arrived at a similar formulation. The 
solution of the system of equations i s  effected by the pseu- 
doinverse formalism [78], [82].  

Hildreth [83] has developed a scheme for computing 
image velocity vectors along contours formed by detecting 
zero-crossings of the Laplacian of Gaussian (LOG) filtered 
image [67]. This approach i s  based on Marr's theory that 
initial motion measurements by the human visual system 
are made only at locations of significant intensity changes. 
The two-dimensional velocity field along the contour is  
described by the vector function V(s), where s denotes 
arclength. V(s) can be decomposed into components v"(s) 
and v'(s) that are perpendicular and tangential, respectively, 
to the contour. 

V(S) = V'(S)U'(S) + v"(s)u"(s), (4.8) 

where u"(s) and u'(s) are unit vectors in the directions per- 
pendicular and tangential to the curve. An orthographic 
projection geometry i s  used. Solutions to (4.8) for the sim- 
ple cases of constant velocity and rigid motion in image 
plane are discussed. The application of a more general con- 
straint is then discussed, i.e., the assumption that velocity 
varies smoothly along the contour. To measure total vari- 
ation in the velocity field the following continuous func- 
tional i s  proposed 

(4.9) 

This is combined with the constraint that the perpendicular 
component of the computed velocity field V . U" must be 
close to the measured perpendicular component /'to form 
the following functional 

+ p s (V . U" - v") ds (4.10) 

where p i s  a weighting factor. A discrete form of the above 
functional i s  specified 

9 = + 92 (4.11) 

k 

9, = c [(V,, - VX,-,l2 + (V,, - vy,~l,21 
, = 2  

+ (VX1 - VXJ2 + (VYl - vy")2 

9 2  = P ,c [ v,,u;, + v y ,  U;, - <I2 

(4.12) 

k 

(4.13) 

where k is  the number of points in the contour. In order 
to find the velocities (Vx,, Vyr) which minimize 9, a9/aVx, and 
a9/aVx, are equated to zero. This yields 2k linear equations 
which are solved via the conjugate gradient algorithm [83]. 
Experimental results using real data have been conducted 
where the initial perpendicular components of velocity 
were computed from the time derivative between two LOG 
filtered images, and the gradient along the zero-crossing 
contours of the first filtered image. Experiments on syn- 
thetic data show that the smoothness criterion does not 
guaranteeaccurateestimatesof image flow. It isargued that 
the velocity field, even though incorrect, i s  perceptually 
valid. 

Nagel [78] has presented a comparative analysis of the 

, = I  

above schemes of Horn and Schunk [69], Haralick and Lee 
[81], Tretiak and Pastor [82], Nagel [80], and Hildreth [83] 
using a mathematical formalism developed by him and has 
shown the relationship between these approaches. 

The above approaches deal with images at a single scale 
of resolution, i.e., the finest resolution available from the 
imaging sensor. Several hierarchical schemes have been 
developed [84]-[87]. Enkelmann [84] creates a Guassian low- 
pass pyramid for each image. Processing begins at a coarse 
level wherein the initial displacement vectors are settozero. 
These vectors are projected to  finer levels via bi-linear inter- 
polation. Within each level, the velocity field is computed 
via Nagel's approach [80] which embodies the oriented 
smoothness criterion. A finite difference approach yields 
a large sparse system of linear equations which i s  solved 
using a multi-resolution relaxation approach. Glazer's 
approach [85] uses Horn and Schunk's criteria [69]. Glazer 
uses a Gaussian pyramid with quad-tree connectivity to  
propagatevelocity vector sfrom coarseto fine levels. Glazer 
uses a finite difference approach and a complex multi-level 
relaxation approach which involves dynamic switching 
between levels. Anandan [87] uses a Laplacian pyramid 
which provides a set of bandpass filters (as opposed to the 
low-pass filters provided by Gaussian pyramids). A coarse 
to fine control strategy i s  also employed via an "overlapped 
projection scheme" that allows for multiple choices in the 
propagation of velocity vectors. Anandan's technique i s  
based on establishing matches between image events in 
successive frames. The match criterion used i s  the min- 
imization of a Gaussian weighted sum-of-squared-differ- 
ences (SSD) in a 5 x 5 window and a confidence measure 
based on the distribution of the S S D  values. A smoothness 
constraint similar to that of Glazer i s  used. The minimi- 
zation problem i s  solved via a finite-element method that 
takes into consideration known discontinuities in the dis- 
place men t field . 

Another method, called the multi-constraint method, i s  
emerging with promise. In this method one considers sev- 
eral functions fl, f2, . . . , f,, such that each of them satisfy 
the constraint equation. In particular, 

Candidate functions include directional derivatives. How- 
ever, the results based upon these functions have not been 
promising. Other candidate functions include g = O(f) 
where 0 is an operator like the contrast, entropy, average, 
etc. Mitiche, Wang and Aggarwal [88] have reported pre- 
liminary success in the computation of optical flow using 
multi-constraint methods. 

Fleet and Jepson [89] and Tsotsos et a / .  [90] have inves- 
tigated the extraction of motion information using Fourier 
techniques. They proposed a hierarchical computational 
framework for early processing in the human visual system 
which involves the use of spatiotemporal linear filters tuned 
to specific frequencies corresponding to specific image 
velocities. A cascaded configuration of orientation specific 
filters followed by speed specific filters was proposed. 
Recently, Heeger [91] demonstrated that afamilyof motion- 
sensitive Gabor filters can be used to compute optic flow. 
He used 3-D (space-time) Gabor filters tuned to  different 
spatiotemporal-frequency bands and described a method 
for combining the outputs of the filters to compute local 
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velocity vectors. He has further suggested a parallel imple- 
mentation and has illustrated the performance of his 
approach with synthetic as well as real data. 

The determination of optical flow for a scene consisting 
of several moving objects has also been attempted. 
Research has focused on segmenting the optic flow into 
regions corresponding t o  distinct objects that undergo dif- 
ferent motion. Murray and Buxton [92] use a Bayesian 
approach to  formulate the segmentation problem.Theoptic 
flow field is modeled as spatial and temporal Markov ran- 
dom fields. The search for the globally optimal segmen- 
tation is performed using simulated annealing. Thompson 
[93] combines optical flow and contrast information in a 
region growing scheme that segments images into regions 
corresponding to  surfaces moving with different velocities. 
Thompson et al. [941 detect flow boundaries using an algo- 
rithm patterned after the Marr-Hildreth zero-crossing 
detector. O'Rourke proposed a method to  group rotating 
random dot patterns [95]. Fennema and Thompson extract 
moving regions by collecting similar optical flow vectors 
[96]. Adiv segmented an optic flow field using a grouping 
method based on  a Hough voting approach [97]. Webb and 
Aggarwal [48] analyzed relative motion between multi- 
jointed parts of objects. More recently, Tsukune and Aggar- 
wal[98] describea method for extracting multiple rotational 
flow fields in the Hough space for orthographically pro- 
jected 3-D velocity vector fields. 

B. Computing Structure and 3 - 0  Flow 

Having computed optical flow, there s t i l l  remains the 
problem of computing the motion and the structure of the 
object in three-dimensional space. A mathematical for- 
mulation of the basic problem i s  first presented. The for- 

be written as 

(4.1 7a) 

v = y -  - - + ((1 + 4) Q X  - xyQY - X Q 3 .  (: :) 
(4.17b) 

The estimation of structure and motion is based on the 
key assumptions that i) the optic flow varies smoothly and 
ii) the surface of the object i s  smooth. Assumption i) allows 
theoptic flow in asmall image neighborhood around image 
location (x, y )  to be specified by a Taylor series as: 

u(x, y)  = U, + u,x + uyy + u,,x2 

v(x, y)  = v, + v,x + v y y  + v,,x2 

+ uXyxy + uyyJ + O&x, y)  (4.184 

+ v,,xy + vyy$ + 03(x ,  y )  (4.18b) 

where the partial derivatives can be computed from the 
optic flow. Assumption ii) allows a small surface patch Z(X, 
Y) around the line of sight to be described as: 

z = z, + zxx + ZYY + ; zxxx2 

+ ZxyXY + ; Z y y Y 2  + O&X, Y) (4.19) 

for Z, > 0 i s  the distance of the surface patch along the line 
of sight. Substituting the relation (4.15) for Z in (4.19) in a 
recursive manner it i s  possible to  further approximate the 
surface in  terms of image plane coordinates as: 

mulation is that used by Prazdny [99], [IOO], Longuet-Hig- 
gins and Prazdny [IOI], Waxman et al. [102], [103], and 
Subbarao [104], [105], among others. 

A camera centered Cartesian coordinate system (X, Y, Z )  
i s  used. The Z axis is directed along the viewing direction. 
The image plane is normal to the Z axis and i s  at unit dis- 
tance from the origin. The image coordinate system (x, y )  
has its origin at (0, 0, 1). The x and y axes are parallel to  the 
X and Y axes, respectively. In  the perspective projection 
geometry, theimageofapoint(X, Y,Z)isformed bydrawing 
a line from it to (0, 0, 0) which intersects the image plane 
at (x, y). Therefore 

x = X/Z and y = Y/Z. (4.15) 

The camera is assumed to be in motion, with V = (Vx,  V y ,  
V z )  being the translational velocity and Q = (Qx, Q y ,  Q z )  
being the rotational velocity. The instantaneous velocity of 
a point R = (X, Y, Z )  i s  given by (X, Y,  Z) = -(V + x R )  
as follows: 

x = - v x  - Q Y Z  + Q Z Y  

Y = - v y  - QZX + QXZ 

x = - v z  - Q X Y  + QYX.  (4.16) 

From this the instantaneous image velocity (U,  v) = ( x ,  y )  can 

(4.20) 

where Z,, = ZoZxx, Z,, = ZoZyy, Z,, = ZoZxv 

follows: 
Further, the scaled translational velocities are denoted as 

v y  V' = V " = -  V Y = -  for Zo > 0. (4.21) 
V X  

ZO ' ZO ZIJ ' 
From (4.17), (4.18), (4.20), and (4.21) it is possible to derive 

the following relations [loll-[103], [I051 assuming rigid uni- 
form motion: 

U, = -V" - Q Y  v, = - v y +  Q X  

U, = -V' + vxzx vy = V' + v y z y  

U, = Q Z  + vxzy v, = - Q Z  + vyzx 
U,, = -2 V'Z, + vxz,, - 2QY U,, = -vzzy + V"Z,, 

U,, = V"ZYY 

+ Q X  

v,, = vyz,, 
v,, = - V'ZX + vyz,, - n vyy = -2 V'Zy + VYZ,, 

+ 2 Q x .  (4.22) 

The system of equations (4.22) relates the optic flow ( U ,  

v) and i ts  first- and second-order spatial derivatives to the 
3-D structure and motion parameters. The geometric struc- 
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ture for the smooth surface is specified locally by the sur- 
face slopes and curvatures, i.e., Zx, Zy, Zxy, Z,,, and Zyy. The 
three-dimensional motion parameters are the components 
of V and Q. The system (4.22) comprises twelve nonlinear 
equations in eleven unknowns and is thusoverdetermined. 
The optic flow and its derivatives are available using any of 
the methods outlined in the previous subsection. The over- 
determined system (4.22) may, hence, be solved to yield the 
structure and motion parameters. 

Many interesting observations may be made regarding 
the above equations. Note from (4.21) and (4.22) that Z,, is 
not recoverable and only scaled translational velocity and 
curvatures may becomputed. Every nonlinearterm in (4.22) 
is a product of a structural parameter and a translational 
velocity component. Every curvature parameter in (4.22) is 
multiplied by a component of translational velocity ( V x  or 
VY) which is parallel to the image plane. Hence, if there is 
no translation parallel to the image plane, surface curva- 
tures cannot be determined. 

The nonlinear overdetermined system (4.22) may or may 
not yield a unique solution. Many situations give rise to 
dependent equations in (4.22) engendering multiple solu- 
tions. A detailed analysis of numerous cases has been pre- 
sented by Subbarao [1041, [I051 and Waxman etal. [1021, [I031 
who have derived closed form solutions for these cases. 
Subbarao shows that in general the solution is unique, and 
at most four solutions are possible in certain situations. 
Negahdaripour [I061 also addressed the ambiguity in inter- 
preting optic flow produced by curved surfaces in motion. 
He argues that the ambiguity is at most three-fold for the 
case of certain hyperboloids of one sheet viewed by an 
observer moving parallel to the image. The ambiguities 
inherent in interpreting noisy flow fields are discussed by 
Adiv [107]. 

An overview of some of the approaches for computing 
structure and motion parameters from optic flow is given 
below. The approaches typically involve restricting the 
nature of motion to be purely translatory or rotational and/ 
or restricting the imaged surface to be planar. These 
assumptions significantly reduce the complexityof the sys- 
tem of equations (4.22). 

Williams [I081 considered the computation of the struc- 
ture of imaged scene components for the situation where 
the sensor was involved in purely translatory motion. The 
Focus of Expansion (FOE) of image flow is assumed known 
and the scene is considered to consist of planar surfaces. 
A height and position is hypothesized for each segmented 
region. An image is generated for the known camera motion 
and compared with the actual image. Error in the hypoth- 
esized structure is  computed from the difference between 
these two images and appropriate corrections are made to 
the hypothesized scene structure. This procedure is 
repeated until the error falls below a threshold. This 
approach has also been suggested for detecting the FOE. 

An approach for determining scene structure from a 
sequence of images acquired by a translating camera is  
credited to Lawton [109]. In this method, features are 
extracted from each image. Several directions of camera 
motion are hypothesized. Each corresponds to a unique 
FOE or FOC. lmagefeaturedisplacementsarecomputed for 
each motion and compared with actual displacements. The 
motion corresponding to minimum error in feature dis- 
placements is chosen to be the best estimate. Scene struc- 

ture is computed in units of relativedepth, i.e., ratioof depth 
to change in depth. The technique allows for the segmen- 
tation of objects at different depth. 

Rieger and Lawton [I101 have devised a method for deter- 
mining the instantaneous axis of translation for a camera 
undergoing general motion. Their method is  based on the 
observation of Longuet-Higgins and Prazdny [I011 that two 
surface points which lie on the same ray of projection but 
at different depthswill have imagevelocitiesthat differonly 
by the difference in the translational components of their 
3-D velocity. Difference vectors are computed at optic flow 
discontinuities and the intersection of these differencevec- 
tors are estimated via an optimization technique similar to 
that used in [109]. The translational axis is specified by this 
procedure and the computation of camera rotation and 
translation i s  simplified. 

Prazdny[l l l ] proposed an approach in which thevelocity 
field is decomposed into rotational and translational com- 
ponents. The rotational motion is hypothesized and the FOE 
is  identified for the resultant translational field. An error 
function of three parameters is used to evaluate the esti- 
mated motion. Minimization of the error yields the best 
estimate. The algorithm has been tested on data generated 
by simulated planar surfaces in motion. 

Bruss and Horn [I121 and Horn [71] discuss the formu- 
lation of an iterative least-mean-squared error approach to 
the estimation of 3-D motion from optical flow. They make 
no a priori assumptions about the motion. They derive a 
system of seven equations, three of which are linear in V”,  
VY, and V’, and four which are solved via a numerical 
method. No experimental results, however, have been 
shown. Horn and Weldon [I131 have proposed methods for 
computing purely translational or purely rotational 3-D 
motion directly from brightness gradients without com- 
putingoptical flow. Theyemployonlyfirst derivatives of the 
image gray levels, and analyticity of the surface is not 
required. Negahdaripour and Horn [I141 discuss the recov- 
ery of motion of a camera relative to a planar surface. They 
also do not compute optic flow, and use instead the spatial 
and temporal derivativesof brightness values directly. They 
present iterative schemes for solving nine non-linear equa- 
tions based on a least-squares formulation, and also pre- 
sent a closed form solution. 

Chou and Kanatani [I151 use a scheme in which object 
motion is initially hypothesized and iteratively refined.They 
extract features from the images obtained before and after 
motion. They do not require that feature correspondence 
be established a priori. They transform the first set of fea- 
tures and evaluate the discrepancy between the estimated 
feature positions and the true feature positions (in the sec- 
ond image) after motion. Assuming infinitesimal motion, 
they relate the discrepancy to optic flow parameters. They 
use a numerical least-squares technique to solve the linear 
constraints for a better estimate of the motion. This process 
is repeated until the estimated motion produces feature 
positions that are sufficientlyclose to the true ones obtained 
in the second image after motion. 

In thissection we have presented theoptic flow approach 
for the estimation of motion parameters from a sequence 
of monocular images. We discussed the basic formulation 
of the problem and outlined some of the recently devel- 
oped techniques for computing the optic flow. The above 
discussion included the problem of inferring 3-D structure 
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and motion from optic flow and overviews of some of the 
solutions to this problem. 

V. COMPARING OPTIC FLOW AND FEATURE-BASED METHODS 

In the preceeding sections we discussed two distinct 
approaches for the estimation of motion from monocular 
image sequences, i.e., feature-based analysis and optical 
flow methods. In this section we compare the two 
approaches and discuss some of the advantages and dis- 
advantages associated with each of the methods. 

Feature-based approaches require that correspondence 
be established between a sparse set of features extracted 
from one image with those extracted from the next image 
in the sequence. Although several methods have been dis- 
cussed for extracting and establishing feature correspon- 
dence,thetask isdifficultandonlypartial solutions suitable 
for simplistic situations have been developed. In general, 
the process i s  complicated by occlusion which may cause 
features to be hidden, false features to be generated and 
hidden features to reappear. Much more work needs to be 
done in this area before the advent of one or more general 
techniques that can be reliably applied to real imagery. In  
comparison, the optic flow approach, in general, does not 
require any feature correspondence to be established. 

The computation of the optical flow as well as the inter- 
pretation of motion and structure from optic flow requires 
the evaluation of first and second partial derivatives of 
image brightness values and also of the optic flow. Real 
images are, in general, noisy. The evaluation of derivatives 
is a noise enhancing operation. The higher the order, the 
more noise sensitive is the derivative. Hence, even in cases 
where closed form solutions for the 3-D structure and 
motion exist, the optical flow techniques do not produce 
usable results because of the sensitivity to noise [71]. Also, 
thereare discontinuities in theoptical flow depending upon 
occlusion, and these regions must be detected reliablyoth- 
erwise violations of the continuity assumption wil l have 
adverse and global effects on the estimate of optical flow. 

In contrast to the method of global minimization, another 
approach depends upon solving a set of constraints in a 
small neighborhood. However, the local and global meth- 
ods rely on similar assumptions of smoothness of optical 
flow field. The common weakness of both methods is the 
inaccurate estimates at points where the flow changes 
sharply or is discontinuous. The global method propagates 
the errors across the entire image, while the neighborhood 
size limits the propagation in local methods. Schunck [70] 
and Kearney et al. [116], [ I17  address these difficulties in 
detail. Kearney et al. present a detailed analysis of the 
sources of errors in local optimization techniques for com- 
puting optical flow [116]. They identify three main sources 
of error: 

1) Poor estimation of brightness gradients in highly tex- 
tured image regions.The problem isespecially severe 
for temporal gradients in moving regions. 

2) Variations in optic flow across the image violate the 
assumption of locally constant flow. Significant error 
arises at discontinuities in the flow field. 

3) Insufficient local variation in the orientation of the 
brightness gradient which causes error propagation 
in the ill-conditioned system. 

Sensitivity to noise i s  also a problem with the feature- 
based techniques though to a lesser degree. The tech- 
niques reported in the literature have all been only mar- 
ginallytolerant to noise. One method of decreasing the sen- 
sitivity to noise has been to use more than the required 
minimum number of features in an iterative least-squares 
technique. Although this usually has a smoothing effect, it 
can cause additional complications. For example, if all the 
additional points chosen arecoplanar, then all that has been 
achieved is a significant increase in the computation time 
and probable instability of the solution. The establishment 
of correspondence also becomes computationally expen- 
sive. 

Recently, Verri and Poggio [I181 argued that the optic flow 
does not correspond to the 2-D velocity field unless very 
special conditions are satisfied. They argue against the use 
of optic flow for quantitative estimates of 3-D motion. They 
apply the theory of stability of dynamical systems to the 
optic flow formulation andconcludethattheoptic flow may 
provide stable qualitative information such as the Focus of 
Expansion and motion discontinuities. 

When numerical techniques are used for the solution of 
structure and motion using either approach one must con- 
sider the many caveats involved in such a solution. A dis- 
cussion of these caveats would be inappropriate in this 
paper and the reader i s  directed to the literature in numer- 
ical analysis for possible pitfalls and remedies. 

Much attention has been devoted recently by the com- 
puter vision community to the use of regularization tech- 
niques in many vision tasks including both feature-based 
formulations and the optic flow approach for motion and 
structure estimation [119]-[123]. This technique i s  used to 
reformulate certain ill-posed problems into well-posed 
problems. The ill-posed problems are those for which either 
1) the solution exists but i s  not unique, or 2) the solution 
does not depend continuously on the input data. Regular- 
ization is typically formulated as an error minimization and 
involves a stabilizing functional that is applied to the input 
data and perhaps an additional smoothing parameter. Due 
tothe seemingly infinitechoiceof possible stabilizingfunc- 
tions and smoothness parameters it i s  difficult to specify a 
best regularizing algorithm for an application. 

VI. COMPUTING MOTION FROM A SEQUENCE OF STEREO 
IMAGES 

The technique described in the previous sections deter- 
minethe motionand structureofan object givenasequence 
of monocular images of the scene. It was seen that in both 
the feature-based methods as well as in the optic flow tech- 
niques, the solutions for structure and motion remain 
ambiguous with respect to absolute value of distance 
between the camera and the scene. In other words, struc- 
ture and motion parameters are unique only up to a scaling 
factor. The use of stereoscopy can provide this additional 
parameter to uniquely determine depth and hence abso- 
lute values for the structure and motion parameters. 

The fusion of stereo and motion may be effected with 
different objectives in mind. Stereoscopic processing may 
be used to aid motion recovery, or conversely, motion anal- 
ysis may be used to help establish feature correspondence 
in stereo image pairs. The fusion of these two processing 
modules in human and other biological visual systems has 
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been detected via neurobiological and psychophysiologi- 
cal investigation [124], [125]. Recent research in both the 
feature-based and optic flow based approaches has 
addressed the fusion of stereoscopic analysis and motion 
estimation. We outline the salient features of such effort. 

A. Feature Based Analysis 

Theoverall analysisconsists ofthe following steps: i) From 
the sequences of stereo images, the depth map for each 
stereo pair is determined, ii) the correspondence between 
three-dimensional features in successive depth maps is  
established, and iii) the motion of the objects i s  computed 
based upon the matched features. This formulation of 
motion analysis based on sequences of stereo images has 
several advantages and disadvantages which are brieflydis- 
cussed below. 

Kim and Aggarwal discuss the estimation of motion 
parameters from a sequence of depth maps extracted from 
stereo images [63]. The depth map for each stereo pair is 
computed using an edge-based stereo algorithm. 3-D fea- 
tures (consisting of lines and points) are extracted from each 
depth map. These features are matched between succes- 
sive depth maps using a two pass relaxation process [61], 
[62]. In the process of extraction, search and matching, the 
search spaceislimited totheareaofthemotion in theimage 
by an image differencing technique. 

In general, correspondences between two 3-D lines 
extracted from one depth map and those from another may 
be used to determine the motion of a rigid object, assuming 
that the motion i s  small. Here, a three-dimensional line is 
specified by a three-dimensional direction and a point on 
the line. The same method can be used for three-dimen- 
sional point correspondences since two points determine 
a line. In general, three point correspondences, or one line 
correspondence and one point correspondence are suffi- 
cient to determine the three-dimensional motion param- 
etersof a movingobject. In theformercase,thethreepoints 
should not be collinear, and in the latter case, the point 
should not lieon thesameline.Asystem of linearequations 
is derived and the solution is  straightforward. A system 
based upon these observations has been implemented to 
derive the structure and the displacement of the objects 
between the views. In this study the motion of simple toy 
objects was estimated with excellent results [63]. 

Although it is theoretically quite easy to estimate the 
motion parameters given the correspondence between two 
sets of 3-D points, practical considerations complicate the 
implementation of the system. In stereo imagery, the range 
values estimated are subject to a great deal of uncertainty 
due primarily to quantization of disparity. More robust for- 
mulations of the problem of motion estimation using 
sequences of stereo images have been proposed [126]-[128]. 
One approach has been to estimate motion parameters via 
a system of linear equations using 3 points in each depth 
map [126]. Several sets of 3 points are chosen from the large 
number of available points and the motion parameters are 
computed for each set. For each set of computed motion 
parameters, all available points in the first depth map are 
subjected to the estimated motion. The discrepancy 
between the points in the second depth map and trans- 
formed points from the first depth map is  computed via a 
simple distance measure. The set of estimated motion 

parameters that yields the lowest error is chosen. Although 
the solution of the system of linear equations is easy, the 
estimation of large sets of motion parameters and espe- 
cially the search for the best set of motion parameters is 
computationally intensive. 

An alternative approach has been to use a least-mean- 
squared error analysis [127], [129]. The underlying principle 
here i s  again the invariance of distance between points on 
an object subjected to rigid motion. The formulation i s  anal- 
ogous to the approach followed by Magee and Aggarwal 
[130], [I311 for determining motion parameters from 
sequences of range images. While the direct method of 
solution is adopted in [130], [131], a two-part iterative 
approach is  adopted in [127l. The displacement between 
the centroids of two sets of registered 3-D points is used 
to determine the translation vector. The rotation matrix is 
decomposed into three factors corresponding to rotations 
aboutthez,x,andyaxes. Eachofthese is  individuallysolved 
for while the other two are fixed. This is repeated in a cyclic 
manner until a least mean squared error criterion is sat- 
isfied. The advantage of the above decomposition is that 
the3-Destimation problem reducestoasetof 2-D problems 
which are more tractable. 

The above approaches consider the determination of 
structure and motion as separate issues. Hence, if structure 
is  first computed (as is usually the case for stereo imagery) 
then errors accrued due to quantization of disparity will 
continue to plague the estimation of motion. To alleviate 
this problem a new approach has been developed by Kiang, 
Chou and Aggarwal [I321 based on iterative refinement of 
both structureand motion estimates. The approach is based 
on a I -D  model for triangulation error in stereoscopy. The 
strategy for modifying structure and motion estimates is 
based on the structural relationship between the corre- 
sponding uncertainty polyhedra in successive depth maps. 
Experimental results using synthetic as well as real data 
demonstrate significant improvement in the estimation of 
both structure and motion when compared to the conven- 
tional techniques based on reducing least-mean-squared 
error in motion alone. 

Aloimonos and Rigoutsos [I331 have developed a scheme 
for computing 3-D motion parameters from a sequence of 
stereo imagery which does not require a priori establish- 
ment of correspondences. The features extracted from the 
left and right images are assumed to lie on a planar surface 
Z = pX + g Y  + c. Perspective imaging geometry i s  
assumed. The image planes are parallel to the X - Y plane. 
The parameters p, q, and c are acquired by solving a set of 
linear equations in which the coefficient of each of the 
unknownsconsistsof afunction of asum of the imagecoor- 
dinates. The solution of the linear equation provides the 
structure of the scene. Applying this process before and 
after the planar surface undergoes motion allows for the 
estimation of the motion parameters. The method devel- 
oped was not as robust as was expected and was modified 
by including a third camera. The performance of the algo- 
rithm in presence of noise is described in [133]. 

Anothertechnique for estimating 3-D motion parameters 
from two 3-D point sets without establishing correspon- 
dence has been presented by Lin etal. [134]. The algorithm 
is  based on the property that a function and its Fourier 
transform must experience the same rotation. The trans- 
lation is first determined from the displacement of the cen- 
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troid. Two functions are defined on the feature set. A cor- 
relation between the Fourier transforms of these functions 
i s  determined. The rotation axis and angle are computed 
based on this procedure. Some simulation results have been 
presented [134]. 

The above techniques are representative of the 
approaches wherein stereopsis aids the recovery of motion. 
There exist many reports in  recent literature discussing the 
use of motion in recovering structure, e.g., Jenkin [I351 used 
instantaneous velocities at feature points to  aid the estab- 
lishment of stereo correspondence, Nevatia [136], Mutch 
[137], Xu et al. [138], and Jain [139], among others, used 
known motion parameters to  simulate stereo. We feel that 
although this approach i s  related to the estimation of 
motion, it i s  a separate field in itself. Hence, we do not pur- 
sue any further the discussion of the use of known motion 
to  aid stereopsis, and we limit our discussion to the use of 
stereoscopy for estimation of motion. 

B. Multiple Optic Flow Fields 

In  Section lVwe discussed the interpretation of optic flow 
fields obtained from a sequence of monocular images. 
Another approach has been to  compute multiple optic flow 
fields from different views, to establish correspondence 
between them and reconstruct 3-D velocity vector fields. 

Mitiche[l40]assumes that optic flow iscomputedforeach 
view in a stereoscopic imaging system for which the ste- 
reoscopy parameters are known. He further assumes that 
correspondence between points in  the two images are 
available which allows for the estimation of depth. Mitiche 
shows that given this information i t  i s  posssible to  compute 
the 3-D motion parameters in  a straightforward manner. 
Waxman and Sinha [I411 have used a similar approach. In  
addition, they have filtered the optic flow field to  minimize 
the effects of noise. Nagel [I421 has also attempted such 
stereo-motion fusion techniques and has devised an 
approach based on the minimization of an error function. 
Tsukune and Aggarwal [98] have used this approach for 
reconstructing 3-D velocity fields for a scene containing 
multiple objects in motion. 

Richards [I431 demonstrated that the relative rate of 
change of disparity (ratio between temporal rate of change 
of disparity and disparity) due to  objectlcamera motion is 
a useful aid in  establishing feature correspondence within 
a pair of stero images. Waxman and Duncan [I441 used the 
ratio between relative flow and disparity to  aid the estab- 
lishment of stereo correspondence. The relative flow i s  
defined to  be the difference between the optic flow at a 
point in the left image and that at the corresponding point 
in the right image. Waxman and Duncan show that their 
ratio is identical to the one devised by Richards [143]. 

VII. CONCLUSION 

In this paper we have reviewed recently developed tech- 
niquesforestimating structureand motion from sequences 
of monocular and stereoscopic images. We discussed two 
distinct approaches: feature-based analysis and optic flow 
techniques. We described some of the different mathe- 
matical formulations that have been developed for each of 
these tasks. A comparison of the feat.ure-based and optic 
flow methodswas then presented in which the relative mer- 

its and demerits of both approaches were discussed. An 
overview of the fusion of stereoscopy and motion analysis, 
especially for aiding the estimation of motion, was pre- 
sented. 

The optic flow approach consists of computing the two- 
dimensional field of instantaneous velocities of brightness 
values (gray levels) in the image plane. Instead of consid- 
ering temporal changes in  image brightness values in  com- 
puting the optic flow field, it i s  possible to also consider 
temporal changes in values that are the result of applying 
various local operators such as contrast, entropy, and spa- 
tial derivatives to the image brightness values. In  either case, 
a relatively dense flow field i s  estimated, usually at every 
pixel in the image. The optic f low is then used in conjunc- 
tion with added constraints or information regarding the 
scene to compute the actual three-dimensional relative 
velocities between scene objects and camera. 

The feature-based approach i s  based on extracting a set 
of relatively sparse but highly discriminatory set of two- 
dimensional features in the images corresponding to  three- 
dimensional object features in the scene such as corners, 
occluding boundaries of surfaces, and boundaries demar- 
cating changes in surface reflectivity. Such points, lines and/ 
or curves are extracted from each image. Inter-frame cor- 
respondence i s  then established between these features. 
Constraints are formulated based on assumptions such as 
rigid body motion, e.g., the 3-D distance between two fea- 
tures on a rigid body remains the same after objectlcamera 
motion. Such constraints usually result in  a system of non- 
linear equations. The observed displacement of the 2-D 
image features are used to solve these equations leading 
ultimately to the computation of motion parameters of 
objects in  the scene. 

In the feature-based approach, the main problems 
encountered are seen to be: 1) establishingand maintaining 
correspondence between the image plane features, 2) 
robust formulation of the problem which is usually based 
on the assumption that the viewed object undergoes rigid 
motion, and 3) developing appropriate iterative algorithms 
which are stable and accurate. The optic flow based 
approach suffers from a different set of drawbacks, i.e., 1) 
it i s  highly noise sensitive due to its dependence on spatio- 
temporal gradients, 2) it requires that motion be smooth 
and small thus requiring a high rate of image acquisition, 
and 3) it requires that motion vary continuously over the 
image. Both approaches also are affected by object OCCIU- 
sion and choice of initiallboundary conditions. The use of 
sequences of stereoscopic images provides three-dimen- 
sional points and lines which somewhat simplify the prob- 
lem of estimating motion. 

A great deal of future research effort is warranted to  over- 
come the obstacles mentioned above. The significant con- 
tributions made by various researchers in  this area during 
the recent past is to be noted and this trend may be expected 
to  continue in the future. Two workshops, one in  Europe 
[145]and one in the USA[146] are planned in the near future 
to engender progress in this challenging area. 
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