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Abstract

This paper presents methods for tracking moving objects in an outdoor environment. A robust tracking is achieved using feature fusion and

multiple cameras. The proposed method integrates spatial position, shape and color information to track object blobs. The trajectories

obtained from individual cameras are incorporated by an extended Kalman filter (EKF) to resolve object occlusion. Our results show that

integrating simple features makes the tracking effective and that EKF improves the tracking accuracy when long-term or temporary occlusion

occurs. The tracked objects are successfully classified into three categories: single person, people group, or vehicle.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The efficient tracking and classification of multiple

moving objects is a challenging and important task in

computer vision. It has applications in surveillance, video

communication and human–computer interaction. Recently,

a significant number of tracking systems have been

proposed. Some address low-level feature tracking while

others deal with high-level description, such as recognition,

event detection, and trajectory interpretation. The success of

high-level description relies on accurate detection and

tracking of moving objects and on the relationship of their

trajectories to the background. There is a considerable

diversity among the trackers proposed by various research-

ers [1–4]. The most widely used cues in object tracking are

spatial position, shape, color, intensity and motion. Many

uncontrollable factors such as lighting, weather, unexpected

intruders or occlusion may affect the efficiency of tracking

when these cues are used in an outdoor environment. One

solution is to combine two or more cues. Another solution is
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to use multiple cameras. We shall consider both of these

options in this paper.
1.1. Feature integration

Multi-feature integration has been exploited extensively

in featured-based tracking applications. Shi and Tomasi [5]

classified a tracked feature as reliable or unreliable

according to the residual of the match between the

associated image region in the first and current frames.

This work [5] was extended by Tommasini et al. [6], who

introduced a simple, efficient, mode-free outlier rejection

rule for rejecting spurious features. Kaneko and Hori [7]

proposed a feature selection method based on the upper

bound of the average template matching error. More

complex integration methods using statistical models have

been presented in [8,9].

Triesch and Malsburg [10] presented a system for

integrating features in a self-organized manner. In their

system, all features agreed on a result, and each feature

adapted to the result agreed upon. Cai and Aggarwal [2]

used a Bayesian classifier to find the most likely match of

the subject in the next frame. Multiple features were

modeled by a joint Gaussian function. Rigoll et al. [11]

combined two stochastic modeling techniques. Pseudo-2D

Hidden Markov models were used to capture the shape of
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a person within an image frame. A Kalman filtering

algorithm was applied to the output of the first model to

track the person by estimating a bounding box trajectory

indicating the location of the person within the entire video

sequence.
1.2. Multi-camera tracking

Single camera tracking is hampered by the camera’s

limited field of view. Occlusion is always a challenge for

single camera trackers, while multi-camera trackers can

utilize the different views to obtain more robust tracking,

especially for wider fields of view or occluded objects.

Multi-camera tracking is a correspondence problem

between objects seen from different views at the same

time or with a fixed time latency. It implies that all views of

the same object should be given the same label.

Khan and Shah [12] presented a system based on the

field of view lines of the camera to establish equivalence

between views of the same object in different cameras.

These lines were used to resolve any ambiguity between

multiple tracks. Cai and Aggarwal [13] used only relative

calibration between cameras to track objects over a long

distance. Dockstader and Tekalp [14] introduced a

distributed, real-time computing platform to improve

feature-based tracking in the presence of articulation and

occlusion. Their contribution was to perform both spatial

and temporal data integration within a unified framework

of 3D position tracking to provide increased robustness to

temporal feature point occlusion. Lee [15] recovered the

full 3D relative positions of the cameras and the domain

plane of activity in the scene using only the tracks of

moving objects.
1.3. Object classification

Despite the significant amount of literature on video

surveillance, little work has been done on the task of

classifying objects as single person, people group, or

vehicle. Tan et al. [16] developed an algorithm to localize

and recognize vehicles in traffic scenes. Lipton et al. [17]

classified moving targets from a video stream into human,

vehicle, or background regions. They used dispersedness

value as a classification metric based on the assumption that

humans were, in general, smaller than vehicles and had

more complex shapes. This assumption became somewhat

tenuous in cases where the humans were closer than the

vehicles to the camera, where humans grouped together, or

when vehicles were occluded. Foresti [18] described a

visual surveillance system to classify moving objects into

car, motorcycle, van, lorry, or person. In his system, object

classification was based on a statistical morphology

operator, the spectrum, which was used to index large

image databases containing multiple views of different

objects.
1.4. Overview of this paper

In this paper, we address the issues of tracking and

classifying moving objects in an outdoor environment using

the fusion of features and cameras. Our tracking objective is

to establish a correspondence between the image structures

of consecutive frames over time to form persistent object

trajectories. Our tracking system integrates spatial position,

shape, and color. This integration makes the tracker

insensitive to background changes, motion interruption,

and object orientation. To resolve the object occlusion, we

fuse the trajectories from multiple cameras into a position

and velocity in real world coordinates. This fusion is done

by an extended Kalman filter, which enables our tracker to

switch from one camera’s observation to the other when the

target object is occluded from view. Our underlying

assumption for using the Kalman filter to fuse data is that

there is a mathematical relationship between the target

object’s image positions in two synchronized cameras [19].

Furthermore, measurements from two synchronized cam-

eras provide enough information to estimate the state

variables of the system, the position and velocity in real

world coordinates.

After obtaining an accurate description of the observed

object, we classify the objects and update the templates,

taking into account any occlusion. Our paper presents two

robust classification metrics to classify the target object into

single person, people group, or vehicle, namely the variance

of motion direction and the variance of compactness. These

two metrics are independent of the target object size and

orientation and the camera used. The classification allows

our tracker to know what kinds of objects are moving in the

scene and to detect when two people or more come together

to form a group, or separate from each other, dissolving a

group.

The remainder of this paper is organized as follows.

Section 2 describes tracking moving objects using a single

camera. Classification metrics are derived in Section 3.

Section 4 provides experimental results to demonstrate the

accuracy and discusses the problems of tracking using a

single camera. The associated classification results are also

presented in this section. Section 5 applies an EKF to take

advantage of multiple cameras. Experimental results using

EKF are given in Section 6. Finally, Section 7 presents

conclusions.
2. Single camera tracking

The first step in tracking objects is to segment the objects

from the background. We use background subtraction at the

expense of updating the background [20,21]. A pixel-wise

median filter with L frame length is employed to build the

background under the assumption that a moving object

would not stay at the same position for more than 0.5L

frames. L is typically of the order of 20. If the object were to
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stay still more than 0.5L frames, it would be incorporated

into the background. A median filter can build the

background even when moving objects exist in the scene,

but usually requires a large amount of memory to save L

frames at a time. So, it is applied only when we detect a

large new blob that lasts for hb frames, hbZ5 in our

examples.

Background subtraction is performed in color and in

edge density. We subtract the foreground from the back-

ground in each RGB color channel and then take the

maximum absolute values of these three differences as the

difference value in color space.

We do a similar subtraction using edge density values,

instead of color values, and thus obtain the difference value

in edge density. The edge density is defined as the average

edge magnitude in a window.

The binary foreground pixels are the jointed pixels after

the above two subtractions. We segment the foreground into

several isolated blobs by an eight-connected algorithm. We

assume that each initial blob has a moving object, which

may be a person, a vehicle, or a people group.
2.1. Feature extraction

We extract four types of features for each moving blob.

These features are used in object tracking except for the

variance of motion direction, which is used for classification

purposes.

The centroid of a blob ð �M; �NÞ tells us the spatial position
of the blob. It is the average position of all pixels in the blob.

Since an object will not move far from its last position from

one frame to the next, its centroid provides us with a strong

and useful feature for tracking objects.

Shape features provide us with shape-based information

about the objects. An object’s shape generally does not

change much between consecutive frames. We select four

features—length and width, area, compactness, and orien-

tation. The object orientation is defined as the angle between

the major axis and the horizontal axis. An object with a

more complex shape is more likely to change its

compactness than an object with a simple shape, assuming

that the same segmentation method is used. We define these

features by:

Length and width (L, W) and area A

Compactness C Z
4p!Area

Perimeter2
(1)

where Perimeter is the number of all boundary pixels

including the boundaries of inside holes.

Orientation qZ
1

2
arctan

2u11
u20Ku02

� �
(2)

where upqZ
P

m

P
n ðmK �MÞpðnK �NÞq for p, qZ0,1,2.

The use of color as a feature allows us to track objects

when shape information is not reliable. Color is independent
of the object size and orientation and especially useful when

we can detect only partial objects. However, color is likely

to change with the lighting. Most previous research [22–24]

has concentrated on how to stabilize color in some color

space, e.g. HSV, normalized RGB, and YIQ. In our work,

we use principal component analysis (PCA) to extract the

color feature of the object. PCA is also called eigenspace

decomposition and is applied to reduce the number of

dimensions of the working space. It projects d-dimensional

data onto a lower-dimensional subspace in a way that is

optimal under a least square error criterion. We choose the

axis that maximizes the variation of the data as our principal

axis. This axis is the eigenvector corresponding to the

maximum eigenvalue. We define the color similarity

measure between objects and templates to be the trans-

formation between their principal axes. All pixel RGB color

values are collected from each blob. Three color channels of

a pixel are denoted by a 1!3 vector rgbZ[R G B]. The

average color of all h pixels is given as

urgb Z
1

h

Xh
iZ1

rgbi (3)

Then, a new vector is defined as rĝbZrgbKurgb. By

concatenating all h pixels, an h!3 matrix RGB is formed to

express the red, green, and blue components of the full data

set as RGBZ ½rĝb1; rĝb2;/rĝbh�. Next, a 3!3 covariance

matrix S is calculated by

SZ
1

h
RGBtRGB (4)

and the eigenvector and eigenvalue matrices are computed

as SFZLF. We take the eigenvector F1 corresponding to

the largest eigenvalue L1 as the principle axis. If two blobs

have similar color, their principle axes should be similar.

After we extract the above features for each object blob,

the feature vector Ri,K will represent the blob, where

Ri;kZ ½ �M; �N;L;W ;A;C; q;F1�. Our tracking is based on the

extracted feature vector instead of the blob itself.
2.2. Object tracking

Our tracking process compares the feature vector Ri,k

with all templates Ti,kK1 (iZ1,2.t). If a match is found,

then the template is updated for the next match through an

adaptive filter of the form

Ti;k Z ð1KbÞTi;kK1 CbRi;k (5)

where the learning parameter b depends upon how fast the

template is updated. If no match is found for several

successive frames, then a new candidate template TtC1,k

will be created. A template will be deleted from the

candidate template list if it is not matched with any object

for successive L frames, the length of the median filer.

A hierarchical matching process is performed in the order of
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centroid, shape, and color. As soon as a match occurs, the

process of matching terminates for the given blob.

In general, an object’s next position will be in the

neighborhood of its current position. We calculate

the distances from a target object to all templates and sort

the distances from the minimum to the maximum, namely

dmin, d2,.dmax. Three thresholds, Th1, Th2, and Th3, are

used in our centroid matching. An object is likely to be a

new object if its dminOTh1. A match occurs if a distance is

the dmin such that dmin!Th2. Considering the case when

occlusion occurs, we add a third constraint to avoid a

possible mismatching, the second minimum distance d2O
dminCTh3. This constraint prevents mismatching if there

are two or more objects at a distance less than threshold Th2
from the template. If the centroid matching procedure fails

to match the target object to any template, then the next

matching procedure, shape, or color matching, is necessary.

To reduce the possibility of a false match, we compare the

target object’s shape or color only with templates that are

the first four minimum distances from the object.

We compute the distance from the shape feature vector

[A, C, q] to the template as

DisZ ðA=AtempK1Þ2 C ðC=CtempK1Þ2 C ðq=qtempK1Þ2

(6)

where Atemp, Ctemp, and qtemp are the area, compactness, and

orientation of the template, respectively. The object is

assigned to the template that yields the least distance if the

distance is less than a predetermined threshold. To achieve a

good measure of dissimilarity using distance, we normalize

the shape feature prior to calculating the distance.

We use a similar function to compare the angles between

the principle axes of the color of the object and the template.

The normalized inner product

SðFR;FTÞZ
Ft

RFT

jjFRjjjjFTjj
(7)

is used as the similarity function. The value of this metric is

larger when blob FR and template FT are similar. This

measurement, which is the cosine of the angle between FR

and FT, is invariant under rotation and dilation although it is

variant under translation and general linear transformation.

If FR and FT have a small angle between them, they form a

match.

If an object goes through the above three procedures and

still does not match any templates, a new candidate template

for this object is generated. This candidate will turn into a

true template after lasting for several successive frames.

During this interim period, the temporary candidate

template cannot be used for matching, and any matching

of the object to another template will eliminate the

candidate template. If two or more objects match the same

template, a decision is made as to which one will be used to

update the template. Usually, we use the object with the

minimum centroid distance from the template.
3. Object classification

The motion feature is an efficient way to track humans

and vehicles [25,26]. Vehicles are more consistent in their

motion because they are rigid objects, whereas humans shift

some parts of their bodies backwards when they move

forward to maintain balance. So the variance of motion

direction is employed to measure motion consistency. We

derive this feature from optical flow.

Optical flow is widely used to estimate motion based on

the assumption that the change in image brightness in the

sequence is due only to motion. This assumption leads to a

brightness constraint equation as

dI

dt
ðx; y; tÞC

vI

vx
ðx; y; tÞ

dx

dt
C

vI

vy
ðx; y; tÞ

dy

dt
Z 0 (8)

where I (x, y, t) is the image intensity as a function of space

(x, y) and time t. This equation does not determine the flow

field since it only has one restriction for two parameters

dx/dt and dy/dt. In order to obtain a unique solution, an

additional smoothness constraint is imposed as

arg min
dx

dt

� �2

C
dy

dt

� �2� �
(9)

By Lagrange optimization, the solutions are

dx

dt
Z nx;t Z

dI
dt

vI
vx

vI
vx

� �2
C vI

vy

� �2
(10)

dy

dt
Z ny;t Z

dI
dt

vI
vy

vI
vx

� �2
C vI

vy

� �2
(11)

where nx,t, and ny,t are the velocities along the x-axis and y-

axis at time t, respectively. The weighted velocity sums of

three successive frames with weights, a-1, a0, and a1 are

Vx;t Z aK1nx;tK1 Ca0nx;t Ca1nx;tC1 (12)

Vy;t Z aK1ny;tK1 Ca0ny;t Ca1ny;tC1 (13)

Then, a Gaussian filter G is applied, yielding

V�
x;t ZVx;t5G and V�

y;t ZVy;t5G (14)

where the symbol 5 is a convolution operator.

We define motion direction as

dZ arctan 2ðV�
y;t=V

�
x;tÞ (15)

where arctan 2 is the four quadrant arctangent function. We

calculate d for each pixel in an object blob and compute the

variance s2d of all ds in the blob. Our experiments show that

s2d is an efficient metric to distinguish a single person.

The variance of motion direction s2d cannot discriminate

a people group from a vehicle. We added the variance of

compactness s2c into consideration based on the observation

that the shape of a people group tends to change
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dramatically, which is measured by the variance of

compactness over frames, denoted as s2c . The s2c is

calculated using the hc compactness values of a tracked

object over hc frames. hcZ20 is used in our experiments.

The tracked object has a compactness value in each frame

where it has been tracked.

A simple yet efficient classifier using two classification

metrics, s2d and s2c , is designed to classify the moving

objects into three categories: single person, people group,

and vehicle. Two thresholds Ths and Thg are estimated from

the training data. A single person is first categorized by its

large variance of motion direction as s2dOThs. Then, a

people group is differentiated from a vehicle by its large

variance of compactness over frames as s2cOThg. The

remaining objects are classified as vehicles. In our

classification, a bicycle is regarded as a vehicle.
4. Experiments in single camera tracking
and classification

We used the PETS2001 datasets and other videos to

evaluate the single camera tracking system. PETS2001

datasets were provided by the second IEEE International

Workshop on Performance Evaluation of Tracking and

Surveillance. Each video is digitized with a frame rate of 25

frames/s. Datasets include moving people and vehicles.

These videos are challenging in terms of significant lighting

variation, occlusion, and scene activity.

Figs. 1–3 show some sample frames from test videos.

The van in Fig. 1(a) stayed still for a long time; hence, it was

merged into the background. It suddenly started in the next

frame. A 20-frame median filter updated the background,

and a new candidate template was created, shown in

Fig. 1(b) by a rectangular blob. In Fig. 1(c), this new

candidate lasted more than three successive frames and thus

began to be tracked as a moving object.

In Fig. 2(a), a car, which was automatically classified as

vehicle, approached a tree. In Fig. 2(b), the car appeared to

be separated into two parts by the tree. The system

recognized that these parts were the same. Fig. 2(c) shows
Fig. 1. (a) The van is still. (b) When the van moves, a new candidate template is cr

true template and tracking begins.
the car emerging from behind the tree. We detected

occlusion by comparing the blob size. If the size reduction

exceeded a certain threshold for three successive frames, an

occlusion was deemed to have occurred. In this case, only

the centroid components of the template were updated. This

was done using a linear prediction by assuming the velocity

same as the preceding frame.

Fig. 3 presents an example of how to track several objects

which group together and then come apart. In Fig. 3(a), a

bicycle was passing a car. The bicycle blended with the car

in Fig. 3(b). This blending ended at Fig. 3(c), and the objects

again were tracked individually.

A classification example is drawn from the PETS2001

sequence with a tree presented earlier in Fig. 2. The variance

of motion direction s2d and the variance of compactness s2c
are used as the classification metrics. Fig. 4(a) and (b) shows

the variance of motion direction and the compactness of a

single person, a people group, a vehicl,e and a bicycle. A

single person is characterized by a high s2d while a people

group has a high s2c. The variance of motion direction of a

single person is above 1.2 on average, as shown in Fig. 4(a),

while those of others are lower than 0.9. A threshold of

variance of motion direction, ThsZ1.0, can be chosen so

that a single person is detected when s2dO1:0. It is clear

from Fig. 4(b) that the variance of compactness of a people

group is as high as 0.18, while those of other classes are

lower than 0.02. Therefore, a threshold, ThgZ0.1 can

classify a people group by s2cO0:1. A bicycle is regarded as

a vehicle in the classification. The classification error is less

than 5% in our experiments [27].

Figs. 5–7 show several examples where individual

features failed to track objects. However, by integrating

the centroid, shape and color features, we can track the

objects accurately. Fig. 5 shows a sudden action. The

predicted position based on constant velocity failed to track

the object since it quickly changed the velocity. Fig. 6

shows a large group of persons. The constant position

predication did not work because many objects changed

their positions when several persons met together. Fig. 7

shows a dynamic background with shadow. The shape

feature was not reliable because the shadow was included in
eated. (c) The candidate template lasts for three frames and thus becomes a



Fig. 2. (a) A car approaches the tree. (b) The car appears to be in two parts. (c) The car emerges from behind the tree.

Fig. 3. (a) Before grouping. (b) Grouping. (c) After grouping.

Fig. 4. $, vehicle; B, bicycle; !, single person; *, people group.

Fig. 5. Sudden action.
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Fig. 6. Large people group.

Fig. 7. Dynamic background.
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the shape feature. Our integration of multiple features

makes the tracker more robust in these three sequences.

All these sequences were tracked correctly as shown in

Figs. 5–7. Classification results of Fig. 7 are shown in Fig. 8.

Given the thresholds ThsZ1.0 and ThgZ0.1, the single

person is detected, as its s2dZ1:4OThs, and the people

group with three people is also detected, as its variance of

compactness is 0.14, greater than the chosen threshold Thg.

In summary, the proposed system was used to analyze

several videos and gave promising results. The background

updating met problems when the lighting changed gradu-

ally. In this situation, our median filter kept updating the

background without holding a static background. Vehicles

were tracked successfully in part because of their large size.

People tracking worked reliably through all sequences as

long as the people were sufficiently isolated from each other.
Fig. 8. Classification results from Fig. 9;
Groups of people were not handled well in that they

significantly occluded each other’s outlines in the image.

The overall performance of single camera tracking was

good. We accurately tracked 13 objects out of 17 moving

objects from the PETS 2001’s videos, with an accuracy of

76%. Among the failed objects, three were due to occlusion.

Our own testing videos gave an accuracy of 82% from 50

objects.
5. Multiple camera tracking

In the previous sections, we developed a framework to

track objects using a single fixed camera. Although we

found the results of our single-camera tracker to be

encouraging, there are some unresolved problems, mainly
!, single person; *, people group.
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due to object occlusion. For example, the bicycle shown in

Fig. 2 was tracked as a different object once it passed behind

a tree.

This section focuses on developing a methodology for

tracking objects in the views of two fixed cameras. We

consider the tracking problem as a dynamic target tracked

by two disparate cameras, each with different measure-

ment dynamics and noise characteristics. We combine the

multiple camera views to obtain a joint tracking that is

better than the single camera tracking in handling

occlusion. In this paper, we fuse the individual camera

observations to obtain combined measurements and then

use a Kalman filter to obtain a final state estimate based

on the fused measurements [28]. Measurement fusion is

accomplished by increasing the dimension of the

observation vector of the Kalman filter, based on the

assumption that there is a mathematical relationship

between the positions of an object Q in two disparate

camera views. Since the mapping from one camera’s view

to the other view is non-linear, an extended Kalman filter

is used to estimate the state vector [29].
5.1. Camera calibration

In order to determine the mathematical relationship

between the observations from two different views, we

calibrate the two cameras using five coplanar control points

[30]. Another calibration method using three coplanar

points has been reported to track the ground point [31];

however, since the ground point is not always reliable due to

noise, we use five points for our calibration. Fig. 9 shows the

five coplanar control points. Points A, B, D, and E are four

vertices of a rectangle and point C is the center of the

rectangle. For our application, an accurate camera cali-

bration simply means that the 2D image coordinate can be

properly predicted given the 3D location of the object.

The transformation from the real world position (xw, yw,

zw) to the camera 3D coordinates (xc, yc, zc) is given by
Fig. 9. The control points on the ground plane (zZ0).
a rotation matrix and a translation vector as

xc

yc

zc

2
4

3
5Z

T11 T21 T31

T12 T22 T32

T13 T23 T33

2
64

3
75

xw

yw

zw

2
4

3
5C

T41

T42

T43

2
64

3
75 (16)

where the rotation matrix and the translation vector are

called the homogeneous transformation T. The transform-

ation from 3D camera coordinates (xc, yc, zc) to the ideal

(undistorted) image coordinate (Qx, Qy) is obtained using

perspective projection with pinhole camera geometry as

Qx Z
xc
zc

f and Qy Z
yc
zc
f (17)

where f is the effective focal length.

Using the calibration technique presented by [30], we

know the homogeneous transformation T, focal length fT
and the image center (Tx, Ty) for camera I and for camera II,

S, fs and (Sx, Sy). Therefore, we have the following equations

for image position (Q1x, Q1y), (Q2x, Q2y) and the real world

position (xw, yw, zw)

Q1x Z
xwT11 CywT21 CzwT31 CT41
xwT13 CywT23 CzwT33 CT43

fT CTx

Z
xc;1

zc;1
fT CTx

Q1y Z
xwT12 CywT22 CzwT32 CT42
xwT13 CywT23 CzwT33 CT43

fT CTy

Z
yc;1

zc;1
fT CTy

Q2x Z
xwS11 CywS21 CzwS31 CS41
xwS13 CywS23 CzwS33 CT43

fS CSx

Z
xc;2

zc;2
fS CSx

Q1y Z
xwS12 CywS22 CzwS32 CS42
xwS13 CywS23 CzwS33 CS43

fS CSy

Z
yc;2
zc;2

fS CSy

(18)

Knowing the calibration of cameras, we are able to

merge the object’s tracking from two different views into a

real world coordinate view. The 3D tracking data is the state

vector Xk, which cannot be measured directly. The object’s

positions in the two camera views are the measurement. We

assume a constant velocity between two consecutive frames.

The dynamic equation related to the state vector Xk is

described as follows

XkC1 ZFkXk CWk (19)

where XkZ ½xwywzw _xw _yw _zw�
T, the spatial position and

velocity in real world coordinates, DT denotes the time
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step in the transition matrix

Fk Z

1 0 0 DT 0 0

0 1 0 0 DT 0

0 0 1 0 0 DT

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
66666666664

3
77777777775

(20)

and Wk is white noise with a known covariance matrix. The

subscript k in the notation denotes the frame number. It is

often omitted for a general frame.

We derive the observation equation from the object’s

positions in two camera views. Let [Q1x,k,Q1y,k] and [Q2x,k,

Q2y,k] be the image positions of object Q in two camera

views at kth frame. The observation vector

Zk Z ½Q1x;k;Q1y;k;Q2x;k�
T Z hkðXkÞCVk (21)

where Vk is white noise with known covariance matrix, and

hk is a non-linear function relating the state vector Xk to the

measurement Zk.

The dynamic equation is linear but the measurement

equation is non-linear, so the EKF is used to estimate the

state vector Xk. Expanding in a Taylor series and neglecting

higher order terms

Zk Z hkðXkÞCVk

Z hkðX̂kjkK1ÞCH 0
kðXkKX̂kjkK1ÞCVk

ZH 0
kXk CVk ChkðX̂kjkK1ÞKH 0

kX̂kjkK1 (22)

where X̂kjkK1 is the estimation of the state vector from X̂kK1

and H 0
k is the Jacobian matrix of partial derivations of hk(Xk)

with respect to Xk.

The EKF recursive equations are

Update of the state estimation

X̂kjk Z X̂kjkK1 CLk½ZkKhkðX̂kjkK1Þ� (23)

Prediction of states

XkC1jk ZFkXkjk (24)

Kalman gain matrix

Lk ZSkjkK1HkðH
0
kSkjkK1Hk CQkÞ

K1 (25)

Update of the covariance matrix of states

Skjk ZSkjkK1KSkjkK1HkðH
0
kSkjkK1Hk CQkÞ

K1H 0
kSkjkK1

(26)

Predication of the covariance matrix of states

SkC1jk ZFkSkjkF
0
k CRk (27)

Initialization is provided by

S0jK1 ZE½ðX0K �X0ÞðX0K �X0Þ
0� and X̂0jK1 Z �X0:
The EKF uses a linearization of the state equations and

the observation equations about the current best estimate of

the state to produce minimum mean-square estimates of the

state when Wk and Vk are white noise. When a filter is

actually working, so that quantities trace Skjk and trace

SkjkK1 become available, one can use these as guides to

jjXkKX̂kjkjj
2 and jjXkKX̂kjkK1jj

2, and this in turn allows

estimating the amount of approximation involved.
5.2. Tracking initialization

Tracking initialization is a process of labeling a new

object in the view of a camera. If this new object has a

correspondence in the other camera, both objects should be

assigned the same tag number. The reason behind tracking

initialization is that when we recover the 3D coordinates of

an object and project the estimated (xw, yw, zw) into Q2y, the

estimated Q2y should be near the observed Q2y. We

initialized tracking by solving a constrained linear least

squares problem, which is described as follows

min
½xw;yw;zw�

fTxc;1KQ1xzc;1

fTyc;1KQ1yzc;1

fSxc;2KQ2xzc;2

fSyc;2KQ2yzc;2

										

										
2

such that zOz0 (28)

where all the symbols are defined in Eq. (18). The sum of

errors is minimum when all the objects in the view of one

camera correctly find their correspondences in the other

camera. Rearranging the above equations yields

min
Y

jjGYKDjj22 such that zOz0 (29)

where

GZ

T11fTKQ1xT13 T21fTKQ1xT23 T31fTKQ1xT33

T12fTKQ1yT13 T22fTKQ1yT23 T32fTKQ1yT33

S11fSKQ2xS13 S21fSKQ2xS23 S31fSKQ2xS33

S12fSKQ2yS13 S22fSKQ2yS23 S32fSKQ2yS33

2
66664

3
77775;

Y Z xw yw zw

 �T

and

DZ

Q1xT43KT41fT

Q1yT43KT42fT

Q2xS43KS41fS

Q2yS43KS42fS

2
66664

3
77775:

We add a constraint zOz0 since the moving object in the

real world always has a non-zero height. This helps us to

remove the shadow on the ground plane, whose height is

zero. We regard the object Q1 in camera I and the object Q2

in camera II as the same object Q if the sum from the above
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optimization problem is the minimum of all possible

combinations.
6. Experiments in multiple camera tracking

Figs. 10 and 11 show two examples of multiple camera

tracking. The dots are the observations in each camera and

the lines are estimations from the EKF. x and y in the plots

are horizontal and vertical coordinates. In Fig. 10, the

projections from the real world trajectory estimated by EKF

accurately fit the observations from the two cameras. The

person appears in both views consistently, therefore, the

trajectory is continuous. In Fig. 11, the car is occluded in the

left view so its trajectory is interrupted for a while.

However, the associated trajectory in the right view is

continuous during that period, which can be used to predict

the interrupted positions. The overall accuracy is 94% for

the 17 moving objects in the PETS 2001’s videos. Three

objects lost in single camera tracking were tracked properly

using two cameras. Only one object was lost for a short time

in the multiple camera tracking.

There is some divergence between the projections and

the observations in Fig. 11. One source of the divergence
Fig. 10. Trajectory of the
comes from the camera calibration and would be reduced by

using more control points to calibrate the camera [30]. The

other source is the time lag from the extended Kalman filter.

Our experiments demonstrate that the overall perform-

ance of multiple camera tracking is better than that of a

single camera, especially when occlusion occurs. The EKF

works well with most temporary occlusions, and the

tracking initialization process can deal with long-term

occlusion of more than 100 frames. Using multiple cameras,

we can track the bicyclist in dataset II, which is occluded for

a long time by the tree in camera I and thus would be

difficult to track using only camera I. More accurate camera

calibration would reduce the tracking error at the cost of

having a more complex observation equation in the EKF.

Multiple camera tracking relies on the objects existing in at

least two camera views most of the time. When the target

object is out of the field of one camera permanently, the

tracking reduced to the single camera method.
7. Conclusions

In this paper, we have presented a system for tracking

and classifying moving objects using single and multiple
single pedestrian.



Fig. 11. Trajectory of the car with occlusion.
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cameras in an outdoor environment. We combine spatial

position, shape and color to achieve good performance in

tracking people and vehicles. Principle component analysis

is used to extract a color vector that is less sensitive to

lighting changes. The variance of motion direction is robust

for discriminating a single person. The variance of

compactness can efficiently detect a people group. It is

encouraging and useful that simple features are successful in

tracking and recognition of moving objects. People tracking

is more challenging than vehicle tracking due to the smaller

object size and higher possibility of occlusion.

The extended Kalman filter fuses data from multiple

cameras and performs quite well despite occlusion.

However, the effectiveness of EKF may be reduced when

occlusion happens in both camera views. Occlusions only in

one camera view are handled successfully. An overall

accuracy of 94% using multiple cameras was obtained for

the PETS 2001 datasets, better than using a single camera.

In addition, none of the thresholds or other parameters were

changed when switching from single camera tracking to

multiple camera tracking.

Based on our success in tracking multiple objects across

multiple video streams, the reported research may be

extended to recognizing moving object activities from
multiple perspectives. Such a system would automatically

monitor the moving objects, including humans and vehicles,

classify activities, and maintain a video database, recording

the time and location of motion.
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