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Position Estimation for an Autonomous 
Mobile Robot in an Outdoor Environment 

Raj Talluri and J. K. 

Abstract- This paper presents a solution to the position es- 
timation problem of an autonomous land vehicle navigating in 
an unstructured mountainous terrain. A digital elevation map 
(DEM) of the area in which the robot is to navigate is assumed 
to be given. It is also assumed that the robot is equipped with 
a camera that can be panned and tilted, a compass, and an 
altimeter. No recognizable landmarks are assumed to be present 
in the environment in which the robot is to navigate, and the 
robot is not assumed to have an initial estimate of its position. 
The solution presented here makes use of the DEM information, 
and structures the problem as a constrained search paradigm by 
searching the DEM for the possible robot location. The shape 
and position of the horizon line in the image plane and the 
known camera geometry of the perspective projection are used as 
parameters to search the DEM. Geometric constraints are used 
to prune the search space significantly. The algorithm is made 
robust to errors in the imaging process by accounting for worst 
case errors. The approach is tested using real terrain data of 
areas in Colorado and Texas. The method is suitable for use in 
outdoor mobile robots and planetary rovers. 

I. INTRODUCTION 
UTONOMOUS mobile robots are one of the important A areas of application of computer vision. The advantages 

of having a vehicle that can navigate without human inter- 
vention are many and varied, ranging from vehicles for use 
in hazardous industrial environments, battlefield surveillance 
vehicles, and planetary rovers. 

The problems associated with navigating mobile robots in an 
indoor structured environment are reasonably well studied, and 
a number of different approaches have been suggested [1]-[6]. 
Outdoor navigation of a mobile robot in an unstructured envi- 
ronment is a more complex problem, and many issues remain 
open and unsolved. The DARPA ALV project [7], the CMU 
NAVLAE! [8], and the University of Massachusetts mobile 
robot project [9] are among some of the significant research 
attempts in the area of outdoor navigation for autonomous 
vehicles. 

Position estimation, or spatial localization as it is alternately 
called, is one of the primary requirements of any autonomous 
navigational task. The environment in which the robot is to 
navigate and the information available about the environment 
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affect the problem significantly. The techniques for an indoor 
office type of environment are quite different from those called 
for in an outdoor scenario. Identifying landmarks, measuring 
range and/or attitude to these landmarks from the robot, and 
using this information to do positional estimation is one 
feasible way of spatial localization [lo]-[13]. However, if the 
robot does not have the ability to detect any landmarks in the 
environment, these approaches do not work. The robot may 
be aided in its navigational task by a preloaded map of the 
environment. The problem to be solved in such a case is to 
establish a correspondence between the map and the images 
taken by the robot. 

This paper considers the problem of an autonomous mobile 
robot navigating in an outdoor mountainous environment, 
equipped with a visual camera that can be panned and tilted. A 
digital elevation map (DEM) of the areas in which the robot is 
to navigate is provided to the robot. The robot is also assumed 
to be equipped with a compass and an altimeter to measure 
the altitude of the robot. In this paper, we present a method to 
estimate the position of the robot in such a scenario. Typical 
applications could be that of an autonomous land vehicle, such 
as a planetary rover. The approach presented formulates the 
position estimation problem as a constrained search problem. 
The horizon line contour (HLC) is extracted from the images 
and used to search the DEM for the possible locations of 
the robot. Geometric constraints derived from the shape and 
position of the HLC and the known camera geometry are used 
to prune the search space significantly. The search strategy is 
a two-stage process. Stage 1 is a coarse search that prunes the 
search space using geometric constraints; stage 2 refines the 
position using a curve matching strategy. The search algorithm 
presented is made robust to the errors in the various search 
parameters. Examples of the position estimation strategy using 
real terrain data are presented. Preliminary results of this work 
were presented in [14] and [15]. 

Section I1 briefly describes the position estimation problem 
of a mobile robot and summarizes the various approaches 
studied so far. Section I11 discusses the general problem of 
image/map correspondence and previous work in this area. 
Section IV describes the constrained search used in this paper 
and all the details of the search algorithm. Section V discusses 
the compuational complexity issues of the search algorithm 
and presents the average case, worst case, and best case order 
of the complexities of searching the DEM. Section VI studies 
the effects of the errors in the various search parameters on 
the position estimation and details methods to make the search 
algorithm robust by accounting for the errors. Section VI1 
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presents results using real terrain data. Finally, Section VI11 
summarizes the work presented in this paper. 

11. POSITION ESTIMATION OF MOBILE ROBOTS 

Determining the position of the robot in its environment is 
one of the basic requirements for autonomous navigation. The 
problem of self-location has received considerable attention, 
and many techniques have been proposed for solving it. 
These techniques vary significantly depending on the kind 
of environment in which the robot is to navigate, the known 
conditions of the environment, and the type of sensors with 
which the robot is equipped. 

In the following discussion, we consider a Cartesian coor- 
dinate system in which the position refers to the location of 
the robot (2, y) on the ground plane and the pose refers to the 
orientation of the robot, i.e., the rotation about the z axis. 

Most mobile robots are equipped with wheel encoders that 
can be used to get an estimate of the robot’s position at 
every instant. However, due to wheel slippage and quantization 
effects, these estimates of the robot’s position contain errors. 
These errors build up and can go grow without bounds as 
the robot moves, and the position estimate becomes more and 
more uncertain. So, most mobile robots use some other form 
of sensing, like vision or range, to sense the environment and 
to aid the position estimation process. 

Broadly, we can classify the position (position and pose) 
estimation techniques into the following types: 1) landmark- 
based methods; 2) methods using trajectory integration and 
dead reckoning; 3) methods using a standard reference pattern; 
and 4) methods using the a priori knowledge of a world model 
and then matching the sensor data with the world model for 
a position estimation. 

Using landmarks for position estimation is a popular ap- 
proach [lo]-[13], [16]-[19]. The robot uses the knowledge 
of its approximate location to locate the landmarks in the 
environment. The landmarks can be naturally occurring in 
the environment, like the tops of buildings, road edges, hill 
tops, etc. in an outdoor scenario [17], [18] or can be iden- 
tifiable beacons placed at known positions to structure the 
environment [ 121. Once these landmarks are identified and 
their range/attitude relative to the robot is measured, the 
robot’s position and pose generally can be triangulated from 
these measurements with a reduced uncertainty. This technique 
suffers from the disadvantages of requiring the availability of 
the landmarks in the environment and the reliance on robot’s 
ability to detect them. 

In the second type of technique, the position and pose of 
a mobile robot are estimated by integrating over its trajectory 
and dead reckoning, i.e., the robot maintains an estimate of its 
current location and pose at all times and, as it moves along, 
updates the estimate by dead reckoning [ 11-[5]. However, this 
technique necessitates the robot’s being able to establish a 
correspondence between the features detected by the sensors 
at the current location and those at the previous location (to 
compute the trajectory of the robot). This is, in general, not 
a easy problem. 

The third method of accurately estimating the position and 
pose of the mobile robot is to place standard patterns in 

known locations in the environment. Once the robot images 
and detects these patterns, the robot’s position can be estimated 
from the known location of the pattern and its geometry. The 
pattern itself is designed to yield a wealth of geometric in- 
formation when transformed under the perspective projection. 
Different researchers [20]-[23] have used different kinds of 
patterns or marks, and the geometry of the method and the 
associated techniques for position estimation vary accordingly. 
These methods are only useful for indoor robots in structured 
environments. 

In the fourth approach, the robot is aided in its navigational 
tasks by providing a priori information about the environment 
in the form of a preloaded world model. The basic idea is 
to sense the environment using on-board sensors on the robot 
and then to try to match these sensory observations to the 
preloaded world model. This process yields an estimate of the 
robot’s position and pose with reduced uncertainty and allows 
the robot to perform other navigational tasks. The problem in 
such an approach is that the sensor readings and the world 
model could be in different forms. For instance, given a CAD 
model of a building and a visual camera, the problem is to 
match the 3-D descriptions in the CAD model to the 2-D visual 
images. This is the problem Kak et al. [24] address in their 
work on the PSEIKI system. Tsubouchi and Yuta [6] discuss 
the position estimation techniques used in their indoor robot, 
YAMABICO. The robot is equipped with a color camera and 
a map of the building where it is to navigate. Both are indoor 
robots for navigating in a building. 

In this paper, we consider the position estimation problem 
of an autonomous land vehicle navigating in an outdoor 
mountainous environment. Out approach falls into the fourth 
type of technique outlined above. A DEM of the area in which 
the robot is to navigate is assumed to be given. The robot is 
assumed to be equipped with a camera that can be panned 
and tilted, an altimeter to measure the robot’s altitude, and 
a compass. No recognizable landmarks are assumed to be 
present in the environment where the robot is to navigate. 
The DEM is a 3-D data base. It records the terrain elevations 
for ground positions at regularly spaced intervals. The images 
recorded by the camera are 2-D intensity images. The problem 
is to find common features to match the 2-D images to the 3- 
D DEM, thereby estimating the position of the robot. Since 
we assume the robot has a compass in this work, we only 
estimate the position and not the pose. 

111. IMAGE/MAP CORRESPONDENCE 
As pointed out earlier, one of the key issues involved in 

determining the position of a mobile robot given a world 
model is to establish a correspondence between the world 
model (map) and the sensor data (image). Once such a 
correspondence is established, the position of the robot in 
the environment can be determined easily as a coordinate 
transformation. In order to solve this problem, we need to 
extract a set of features from the sensor data and identify the 
corresponding features in the world model. The problem is 
further complicated by the fact that the image and the map are 
usually in different formats. 
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Indeed, this problem of image/map correspondence is of 
fundamental importance not only to the mobile robot position 
estimation problem but also to many other computer vision 
problems in general, such as object recognition, pose esti- 
mation, airborne surveillance and reconnaissance, etc. Other 
work addressing this image/map correspondence problem is 
described in [17], [24]-[29]. The work by [27]-[29] is related 
more closely to our work in this paper. 

Freeman and Morse [28] consider the problem of searching 
a contour map for a given terrain elevation profile. Such a 
problem is encountered, for example, when locating the ground 
track of an aircraft (the projection of the flight path on the 
ground) given the elevation of the terrain below the aircraft 
during the flight. The authors describe a solution that takes 
advantage of the topological properties of the contour map. A 
graph of the map topology is used to identify all the possible 
contour lines that would have been intersected by the ground 
track. So, the topological constraints of the terrain elevation 
profile and the geometric constraints of the flight path are 
used in estimating the location of the elevation profile in the 
given map. Ernst and Flinchbach [27] consider the problem 
of determining the correspondence between maps and the 
terrain images in low-altitude airborne scenarios. They assume 
that an initial estimate of the three-dimensional position is 
available. Their approach consists of partially matching the 
detected and expected curves in the image plane. Expected 
curves are generated from a map, using the estimate of the 
sensor position, and they match the simulated curves with the 
curves in the image plane. In contrast, our method does not 
assume the availability of an initial estimate of the sensor 
position. Instead we derive a set of possible positions by using 
a constrained search paradigm to prune the search space of 
possible locations. Rodriguez and Agganval [29] also consider 
the problem of matching aerial image to DEM’s. They use 
a sequence of aerial images to perform stereo analysis on 
successive images and recover an elevation map. Then they 
present a method to match the recovered elevation map to 
the given DEM and thereby estimate the position and pose of 
the airborne sensor. All the above work, however, is concerned 
mainly with an airborne sensor. Our current research considers 
the problem of the sensor on an autonomous land vehicle. We 
use a constrained search strategy to isolate the robot’s position, 

IV. CONSTRAINED SEARCH 
One approach to this problem is to extract features from the 

images and then search the map for the occurrence of corre- 
sponding features. Once this correspondence is established, the 
position can then be computed. However, an exhaustive search 
of the entire map is usually prohibitively expensive if the map 
is very large, as in our case. As an alternative, we formulate 
this correspondence problem as a constrained search problem. 
We extract features from the images taken by the robot, and 
instead of searching for the corresponding features in the map, 
we search the space of possible robot positions for locations 
from where such features could be imaged. Once we isolate 
these sets of possible locations, then the expected features from 
these positions are generated; using a matching technique, 
the exact robot location is isolated from among these sets 

of possible locations. We use the horizon line as the image 
feature. Instead of searching using the entire feature, we use a 
subset of the feature and search the map for possible locations 
where such features can be seen. In this search strategy, the 
space of possible locations is first quantized to a discrete set. 
Then we derive geometric constraints from the image feature 
and the known camera geometry that need to be satisfied by 
any of the hypothesized positions of the robot. Using these 
constraints, large subspaces in this discretized search space of 
the possible locations are pruned as being impossible. Once 
the search space is pruned to a manageable size, it is searched 
exhaustively using the entire feature for the best estimate of 
the robot location. 

The DEM is a 3-D data base. It is a two-dimensional array of 
uniformly spaced terrain elevation measurements. DEM’s for 
various areas in the US can be obtained from the United States 
Geographical Survey (USGS). In this research, real terrain 
data were used. The position estimation algorithms developed 
were tested on DEM’s of a 1:24000 scale, covering different 
mountainous areas in Colorado and Texas. Typical DEM’s 
were 350 by 450 samples, with a spacing of 30 m between 
samples. So they covered an area of typically of 140 km2. The 
images recorded by the camera were 2-D intensity images. 
The problem was to find common features to match the 2-D 
images to the 3-D DEM. 

The presented solution uses the DEM information and 
structures the problem as a constrained search in the DEM 
for the possible robot location. Since the robot is assumed to 
be located in the DEM, the DEM grid is used as a quantized 
version of the entire space of possible robot locations. The 
feature used to search the DEM is the shape and position of 
the horizon line contour (HLC) in the image plane. From the 
current robot position, images are taken in the four geographic 
directions: N, S, E, and W. The contour of the HLC is 
extracted from these images and coded. Using the height of 
the contour line in the image plane and the known camera 
geometry as input parameters, the entire DEM is searched for 
possible camera locations so that the points in the elevation 
map project onto the image plane to form a contour of the 
shape and height we are searching for. Since searching the 
DEM exhaustively for the exact shape of the horizon line is 
a very computationally intensive process, we split the search 
into two stages. In stage 1, we search using the height of 
the horizon line at the center of the image plane in all the 
four images. Geometric constraints derived from the camera 
geometry and the height of the HLC are used to prune large 
subspaces of the search space; finally, the position is isolated 
to a small set of possible locations. In stage 2, these locations 
are then considered as the candidate robot positions, and the 
actual image that would be seen at these points is generated 
using computer graphics rendering techniques from the DEM. 
The HLC’s are also extracted from these images and then 
compared with the original HLC’s to arrive at a measure of 
the new HLC’s disparity. The robot location corresponding to 
the lowest disparity is then considered as the best estimate of 
the robot’s position. As the results show, the approach is quite 
effective and, in almost all cases, the position estimate is very 
close to the actual position. 
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This approach is novel and has many advantages over 
previous methods. It does not rely on the existence of environ- 
mental landmarks and their detection. It does not necessitate 
the building of a complicated world model from the sensor 
observations. It is also a totally passive navigational technique 
since the type of sensing assumed is a single visual camera. 
The errors in positional estimation are not cumulative. 

A. The Search Algorithm 
In generating the four geographic views, the camera is 

assumed to have zero roll, and the optical axis of the camera 
is assumed to pass through the image center. The camera's 
tilt angle $, defined as the angle between the optical axis 
and the horizontal plane, is adjusted until the horizon line 
is clearly visible in the image. This angle is then measured 
using an inclinometer. Commercial inclinometers that sense tilt 
angles up to 0.005' resolution are available. The altitude of the 
camera H is measured using an altimeter. This measurement 
is adjusted such that the altimeter reading and the height in 
the DEM are with respect to the same reference. Commercial 
barometric altimeters with a resolution of up to a few tens 
of feet are available. The HLC is then extracted from these 
images using basic image processing techniques, and the 
height of HLC at the center of the image plane in each of 
these four images is measured. Let these heights be hi (i = N, 
S, E, W). The reason for using the height of the HLC at the 
center of the image plane is that the DEM is assumed to be 
gridded along N-S and E-W axes. So, the points that project 
onto the HLC at the center all lie along the same grid line in 
the DEM. Using the height of the camera H ,  the tilt angle $i, 
and the HLC height h i  in one of the directions, say north, the 
DEM is searched for the possible camera locations. 

The algorithm Search is used to search the DEM in the 
north direction. It is similar for the other directions except that 
the search is carried out only in the reduced set of candidate 
camera positions returned by the previous search process. 
The direction and hence the limits of the search also vary 
depending on the direction in which the image is taken. It uses 
two pointers, one pointing to the current hypothesized camera 
location, CAMERA, and the other pointing to a candidate grid 
point, POINT. The idea is to assume that the CAMERA is at 
a certain point (x,y). Search along the y line to see if any 
POINT exists that will project at the desired height hi onto 
the HLC. If so, mark this CAMERA as a possible camera 
position. Repeat the procedure for all the CAMERA positions 
along this y line and then for all y lines. The pseudo-code of 
the algorithm is presented below. 

The Algorithm Search Stage 1 of the search process for 
searching in the north direction is described below. 

Input: The DEM, h N ,  $ N ,  and H .  
Output: A list of possible camera locations S. 

1 Initialize the list S to zero. 
2 PO1NT.Y = CAMERA-Y = YMIN. 

for (CAMERA.Y YMAX) do 
3 PO1NT.Y = CAMERA.Y. 
P0INT.X = XMIN. 
CAMERA.X = XMAX. 

for (CAMERA-X > XMIN) do 
for (PO1NT.X < CAMERA.X) do 
4 Zest = Get-z-estimate (hjv I $ N  H I 

CAMERA,POINT) / *  computed 
using equation 1 * /  

from the DEM * /  

Store(S,CAMERA). / *  save 
current CAMERA location 
in the list*/ 

Zactual = P0INT.Z. / *  retrieved 

5 if (Zest M Zactual) 

6 else if (Zactual > Zest 
i f  (Is-In-List(S,CAMERA)) 

Remove(S,CAMERA). 
/ *  discard this CAMERA 
location if stored 
previously in the list. * /  

CAMERA.X = PO1NT.X. 
PO1NT.X = XMIN. / *  discard 

all the locations between 
current CAMERA and the 
POINT by updating the 
CAMERA and POINT 
locations * /  

7 increment P0INT.X 
od 

8 decrement CAMERA-X 
od 

9 increment CAMERA. 

End Algorithm Search. 
od 

Here, CAMERA.X and CAMERA.Y denote the x and y 
grid values of the location CAMERA and P0INT.X and 
P0INT.Y denote the values of the candidate point (see Fig. 1). 
CAMERA.X is initialized to XMAX, P0INT.X to XMIN; 
and CAMERA.Y and P0INT.Y to YMIN. Using the known 
approximate camera height H and the tilt angle $ N ,  the height 
of the HLC, h N ,  is back projected to the POINT using the 
geometry shown in Fig. 2. The elevation Zest necessary for 
this POINT to project on to the HLC is estimated using (1) 
given below. The Appendix presents the derivation . The 
actual height Zactual (P0INT.Z) is extracted from the DEM 
data base. If ,Tactual is equal to Zest, then CAMERA is 
saved as a possible camera position. If Zactual is less than 
Zest, then the POINT is updated to a position closer to 
the CAMERA (in this case, PO1NT.X is incremented). This 
process is continued until POINT coincides with CAMERA. 
Then POINT is reinitialized, and CAMERA is updated by 
moving it closer to POINT (in this case, CAMERA.X is 
decremented). If at some stage Zactual is greater than Zest, 
then CAMERA is not a possible location since if it were, the 
elevation at POINT, Zactual, would project a height higher than 
h N .  Therefore, if this CAMERA location was saved before, it 
is discarded. We can also say that none of the points between 
CAMERA and POINT are possible camera locations since at 
all these, the elevation at POINT, Zactual, would project a 
height higher than h N .  This constraint proves very useful in 
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Top View of the DEM 

Fig. 1. The search in the north direction. 

reducing the search space to a large extent for mountainous 
terrains with many altitude variations, such as those considered 
in the illustration. The search process is then repeated along 
all the y lines in this direction, i.e., for CAMERA.Y and 
P0INT.Y ranging from YMIN to YMAX. The possible camera 
positions returned by this search process are then considered as 
inputs for the next search, which searches among this set with 
geometric constraints extracted from the image along another 
direction. The process is continued by applying the constraints 
in all the four directions, and the search refines the possible 
locations to a small set usually clustered around the actual 
location (see Fig. 14 below). 

We give below an expression for the estimated elevation 
Zest at a point in the elevation map for a hypothesized camera 
location and for a known imaging geometry shown in Fig. 2. 

where 
image plane height 

2 Imax  = 

f is the focal length of the camera, 0 is the perspective angle, 
h is the HLC height at the center of the image, 4 is the camera 
tilt angle, H is the altitude of the camera, and z is the distance 
of the point from the camera. 

Another constraint used to reduce the search space is to use 
the approximate altitude H of the camera. Only those points 
of the DEM are considered as possible camera locations where 
the elevation Zactual lies close to H ,  i.e., H - S H  < Zactual < 
H + SH where SH is the resolution of the sensor used to 
measure the camera's height. 

B. Curve Matching 

Stage 2 of the search process further isolates the camera 
location from the small set of possible camera locations 
returned by the first stage. In this stage, each point of the 
set is considered as a possible candidate, and the image that 
would be seen in a particular direction if the camera were 

I "  

CAMERA POINT 

Fig. 2. The geometry of the projection. 

located at that location is generated from the DEM using 
computer graphics rendering techniques described in Section 
VII. The HLC's from these images are then extracted and 
compared with the actual image HLC in the same direction. 
This is basically a 2-D curve matching problem. We have 
a model curve (the HLC extracted from the image) and 
a set of candidate curves (the HLC's generated from the 
candidate locations using the DEM). The objective is to find 
the candidate curve that matches the model curve closest. 
There is a substantial body of work in matching curves for 
object recognition, [26], [27], [30], and [31] to name a few. All 
of these mainly concern matching an image curve to a model 
and estimating the position and pose of the camera for the best 
match. Our problem is simpler than these problems because 
we use a search strategy to first isolate similar curves. Our 
objective is only to isolate the curve that matches to the model 
curve best. We use a least square technique to determine the 
best match. Essentially, we compute the mean square disparity 
between each of the candidate curves and the model curve. The 
candidate curve that results in the lowest mean square error is 
considered as the best estimate of the the robot's position. 

If mi(i = 1, ..n) represents the model curve with n points 
and the 1 candidate curves are represented by ck(k = 1, ..1), 
each having n points C&(i = 1, ..n), then for each k(k = 1, ..Z) 
we compute 

The candidate location with the lowest SI, is considered 
as the best estimate of the camera position. That means the 
camera location corresponding to the HLC Ck for which 

A = MIN,"=,Sk 

is the best estimate of the camera location. 
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TABLE I 
SEARCH RESULTS 

(150.2,100.8) 342 7 
(150.0,200.0) 126 3 
(150.3,300.6) 227 8 
(200.1,lOOS) 473 8 
(200.2,200.2) 889 26 
(200.2,300.8) 334 9 
(300.0,lOO.O) 334 4 
(300.5,200.8) 273 17 
(300.2,300.8) 254 10 

(151,101) 
(15 1,200) 
(150,301) 
(200,100) 
(201,20 1) 
(201,300) 
(301,100) 
(301,200) 
(300,300) 

(151,102) 
(151,201) 
(152,303) 
(202, 100) 
(200,202) 
(202,302) 
(301,101) 
(302,202) 
(301,302) 

0.824621 
1 .oooooo 
0.500000 
0.509920 
1.131371 
1.131371 
1.000000 
0.943380 
0.824621 

1.442210 2493757 
1.414214 2674226 
2.941088 2805477 
1.964688 2149225 
1.81 1077 2493757 
2.163310 3133603 
1.414214 2854696 
1.920937 1804693 
1.442210 2187501 

(1) The actual postion. 
(2) The number of possible positions after searching in one direction. 
(3) The number of possible positions after searching in all directions. 
(4) The estimated position (noise-free case). 
(5) The estimated position (with additive Gaussian noise zero mean and standard 
deviation c = 5 pixels. 
(6) The error in estimated position in grid points (niose-free case). 
(7) The error in estimated position in grid points (with additive noise),. 
(8) The number of POINT locations explored by stage 1. 

As the illustrations in Section VI1 show, the error measure 
is quite sensitive, and a location about two grid points away 
from the correct location results in a A of 48.3442. To reduce 
the effects of noise on the HLC, the HLC’s are first smoothed 
using a Gaussian low pass filter. A zero mean Gaussian with 
a U of 5 is used in the test runs. Due to quantization and other 
noise effects, this search strategy does not always isolate the 
position to the grid point nearest the exact location. However, 
the search still isolates the location to a grid point that, 
although not nearest the true location, is still within a small 
neighborhood around the true location. By using the DEM and 
generating the images that would be seen at different locations 
within a small neighborhood around the location isolated by 
the search, and using the curve matching strategy described in 
the paper, the camera location was isolated to a point nearest 
the true location. 

This search strategy can be used in a bootstrap mode. That 
is, once the robot isolates its position in the DEM, for the 
subsequent navigation tasks this position estimate can be used 
to search only “near” the current robot location and not the 
entire DEM. When the location of the robot is known quite 
accurately, then we can in fact eliminate stage 1 and only 
use stage 2 of the search in a small neighborhood around the 
current location. 

V. COMPUTATIONAL COMPLEXITY ISSUES 
In this section, we discuss the computational complexity of 

stage 1 of the search strategy used to isolate the position of the 
robot in the DEM. The most computationally expensive stage 
of the whole search process is the search in the first direction 
(N, S, E, or W). After searching along one of these directions, 
we find that the number of possible robot locations falls to 
a small number, and hence searching among this reduced 
set using the constraints in other directions is considerably 

cheaper. Typically in our test runs, shown in Table I, we find 
that using a map of 164063 (359 x 457) grid points, after 
searching in one of the directions, the number of possible robot 
locations falls to a few hundred locations. 

Note that deriving a general formula for the exact number 
of computations required by the search process is not feasible, 
since it is completely data dependent, i.e., on the nature of 
the elevation values in the DEM. However, we can derive 
bounds on the order of complexity of the search algorithm as 
a function of the map size (using the probability distribution 
function of the elevation data in the map) and verify these 
with experimental results. 

The algorithm Search described in the previous section 
essentially searches the entire DEM size ( M  x N )  using 
the HLC height h and isolates a reduced set of possible 
robot locations. Search searches along each of the N columns 
iteratively for the robot location. Fig. 3 shows the search along 
one of the columns. The 2 coordinate of the current camera 
location, CAMERA.X, runs from M to 1. For each of the 
CAMERA locations, we consider the PO1NT.X positions from 
1 to (CAMERA.X - 1). And, for each set of CAMERA and 
POINT positions, the main computation is performed by steps 
4, 5, and 6, where, for each CAMERA and POINT location, 
the estimated height Zest is computed by back projecting h, 
and this is compared with the actual height at POINT given in 
the DEM, Zactual. Depending on the result of this comparison, 
either the current camera location CAMERA is stored, or all 
the locations between CAMERA and POINT are discarded. 
Hence, the number of times steps 4, 5, and 6 are executed is 
a measure of the amount of computation performed. 

A.  Average Case Complexity 
Consider the search along the ith column shown in Fig. 3. 

To determine the average amount of computation performed, 
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CAMERA.X - P0INT.X - +- x 1  -40 

Fig. 3. The search along one of the columns. 

we need to determine the grid point where the condition in 
Step 6, (Zactual > Zest) is satisfied in each iteration. Let x1 

be a random variable that denotes the grid point where the 
condition (Zactual(xl) > Zest(xl)) is satisfied for the first 
time, i.e., when CAMERA.X = M and P0INT.X = 1, where 
Zactual(xl) is the elevation in the DEM at the grid point $1 and 
Zest(xl) is the back-projected height at z1 using the camera 
geometry, i.e., h, H ,  $ , 8 .  

Now the expectation of x1 is given by 
M-1 

E(x1) = xlP(S1) 
2, =1 

where p(zl), the probability of the condition in Step 6 being 
satisfied at 51, is given by 

~ ( z I )  = PrOb(Zactual(x1) > zest(x1)) 

= 1 - PrOb(Zactual(x1) <_ zest(x1)). 

Thus, p(l) ,  the probability of the condition in Step 6 being 
satisfied at x1 = 1, is given by 

~ ( 1 )  = 1 - Prob(Zactual(1) L zest(1)) 
= 1 - q  

- 41 
- 

and p(2) is given by the product of the probability that Step 
6 is satisfied when x1 = 2 and is not satisfied when x1 = 1. 
We have 

~ ( 2 )  = Prob(Zactual(2) > Zest(2)) 
* PrOb(Zactual(1) 5 Zest(1)) 

= 927-1 

p ( k )  = qkrk-lrk-2 . . . T1 

p(M - 1) = q M - l T M - 2 . .  . T I .  

Hence, the expectation of x1 is given by 
M-1 

E(z1) = xlP(Z1) 
x1=1 

= 1.Q -k 2 4 2 7 3  -k 3.q3T2Ti 

+ . . . f (M - l ) . q M - l T M - 2 . .  .T'1 

= M i .  

Thus, on the average we need to perform steps 4, 5, and 6 
Ml times before we hit the first tallpoint, where the condition 

in Step 6 is satisfied. 

1 I ' 1 1 '  I I 

519 

In other words, we need to explore MI 
POINT positions. The CAMERA location is now updated to 
the grid point at MI - 1, the POINT location is reset to 1, and 
the search is continued. Let the location of the next grid point 
where the condition in Step 6 is satisfied be denoted by Mz. 

Then 

Let this search procedure continue n tirnes before it termi- 
nates. Note that the limits of the summations are decreasing 
each time, i.e., MI 2 MZ 2 M3,. . . , M,. We thus have the 
average amount of computation performed for the ith column 
given by 

On the average, this amount of computation is to be per- 
formed for all the N columns. So, the total average computa- 
tion for searching the entire map is given by NC. In the above 
derivation the probabilities ri = p ( i )  = 1 -Prob(Zactuai(i) < 
Zest (2) )  can be computed from the probability distribution 
function of the DEM. 

B. Upper Bound 
To derive an upper bound on the computation performed by 

the algorithm Search, consider the case in which no pruning 
takes place in steps 4, 5, and 6 for all the rows. In this case, 
MI = Mz = M3 = . . . = M, = M, and n = M. Hence, the 
total number of POINT locations for which the steps 4, 5, and 
6 are performed for each row is given by 

MI + M2 + . . . + M, = O(M2) since n = M .  

If a similar situation occurs for all the N columns, we have 
the upper bound on the complexity as O ( M z N ) .  

C. Lower Bound 

To derive a lower bound, we can consider the more fortunate 
circumstances in which steps 4,5, and 6 perform the maximum 
pruning. That is, the nature of the DEM is such that for 
each of the (N - 1) columns, which do not contain the 
true robot location, when CAMERA.X = M and P0INT.X 
= 1, we find that in Step 6, the condition Zactual > Zest is 
satisfied and hence all the POINT locations between POINT 
and CAMERA are discarded. Thus, MI = 1 and n = 1 and 
the amount of computation required is 0(1) for each of these 
N - 1 columns. However, for the column that contains the 
true robot location, the minimum computation is required if  
1) the true camera location is at CAMERA.X = M and none 
of the P0INT.X positions from 1 to CAMERA.X satisfy the 
condition in Step 6. Thus, MI = M. 2) When CAMERA.X 
= M - 1 and P0INT.X = 1, Step 6 is satisfied, and hence no 
other CAMERA location need be considered in this column. 
Thus, M2 = 1, and hence, n = 2. 
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Fig. 4. The probability distribution function of elevation in the DEM 
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Fig, 5.  The probability density function of elevation in the DEM. 

The lower bound on the total amount of computation 
required is given by 

( N  - 1) .  0(1) + O ( M )  + 0(1) = O ( M  + N )  
= O ( M ) ,  i f M > N  
= O ( N ) ,  if N > M.  

Note, however, that these upper and lower bounds are quite 
loose. Since the data in the DEM usually represent a real 
mountain range, it will be much more correlated and the 
situations considered in deriving the bounds never happen. 
Also, for a given H ,  4 and 6 ,  the the value Zest(xl) depends 
on h, the height of the HLC. The average complexity of the 
search is therefore dependent on h. Fig. 6 shows a plot of 
the average number of POINT locations explored for different 
values of h, and for a given H ,  4 and 6 .  In this figure we used 
a DEM that was 359 x 457, i.e., M = 359 and H = 800 ft, 
4 = O", 0 = 33'. The probability distribution function and 
the probability density function of the elevation value in the 
DEM used are shown in Figs. 4 and 5, respectively. 

The probabilities ri and q;, used in computing the average 
amount of computation, are computed using Fig. 4. From Fig. 
6 we can see that the average number of POINT locations 
explored grows with h. This can be explained by the fact that, 

Fig. 6. The average number of POINT locations explored in each column 
versus 11. 

as h increases, for each 5 1 ,  Zest(xl) increases, and hence the 
probability Prob(ZaCt,,l(zl) > Zest(x~))  decreases. Hence, 
we need to explore more POINT locations before the condition 
in Step 6 is satisfied. So, the average amount of computation 
performed increases with increasing h. This observation leads 
us to devise a search strategy in which, of the four directions 
N, S, E, and W that we desire to search, we search in the 
direction with the lowest value of h first and then the next 
higher h and so on. This has the effect of reducing the amount 
of computation required in isolating the robot location. We also 
observe from Fig. 6 that the average amount of computation 
performed is O ( M )  for each column. For searching among all 
the N rows, it should be on the order of O ( M N ) .  

In our experiments, in addition to computing the position 
we also computed the amount of computation required by 
counting the number of times steps 4, 5, and 6 are executed, 
i.e., the number of POINT locations considered for back 
projection. These are also shown in Table I. Note that the 
number of POINT locations lies between the lower bound 
O ( M  + N )  and the upper bound O ( M 2 N ) .  From the table 
we see that these are is in O ( M N )  as predicted by Fig. 6. 
The number of POINT locations considered are actually equal 
to k M N ,  where k is a constant and IC E (10,20). Thus, the 
constrained search strategy serves to reduce the complexity of 
the search from O ( M 2 N )  in the worst case to O ( M N )  on 
the average, due to the pruning. 

VI. ERROR ANALYSIS 

The search algorithm depends upon the errors in three 
parameters: the error in altitude H of the camera, the HLC 
height h; in the image plane, and the tilt angle of the camera 
$;. These three parameters affect the estimated elevation Zest 
at a particular candidate point POINT for a given hypothesized 
camera position CAMERA. The errors in Zest directly reflect 
as errors in the positional estimation, since in step 5 of the 
algorithm, only when Zest is equal to Zactual do we consider 
the current camera location as a possible candidate. In the rest 
of this section, we analyze the effects of errors in these three 
parameters on the computation of Zest and then discuss the 
measures taken in the algorithm to account for the worst case 
case errors. 

The equation relating Zest to hi, 4;, and H ,  derived in the 
previous section, is given by (1) above. For a given size of 
the image (arm,,, 21max) and angle of perspective projection 
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Fig. 7. ,Zest versus I for different h,. 

0, tan6'/1,,, is a constant. Therefore, the variables are H ,  
hi, and 4 t .  

Expanding the use of Taylor's series and ignoring the higher 
order terms, we have 

A.  Errors in H 

Equation (3) shows that the error in H is directly reflected 
as an error in Zest. To account for these, a worst case error 
in H is estimated from the sensor used to measure H .  Let 
this be SH. In the search algorithm, this can be accounted for 
by considering the estimated elevation at the candidate point 
(POINT) to be acceptable if Zest -SH < Zactual < Zest +SH. 

B. Errors in h, 

The errors in h, are mainly due to image quantization error 
and errors in the edge detector used to extract the horizon line. 
Since x, the distance between POINT and CAMERA, occurs 
as a multiplicative parameter in the second and third terms of 
(I), the errors in h, are magnified by this and, hence, vary 
depending on x. The worst error compensation should take 
this into account. Fig. 7 shows a typical plot of Zest versus 
x for different Ah,. As can be seen, with increasing distance 
the error in Zest grows almost linearly. Fig. 8 shows a plot 
of AZ,,, versus Ah, for different 4zs and for fixed x and H .  
Ideally, AZest = 0 should occur at Ah, = 0. However, due 
to image quantization errors, this occurs for Ah, E (-1, fl), 
as can be seen for different values of 4,. One way to account 
for these errors in h, is to back-project a band of h, values, 
(h,  -Ah,, h,+Ah,), instead of a single h, in the estimation of 
Zest. Thus, for each CAMERA and POINT location, we obtain 
a range of acceptable elevations (Zest + AZest, Zest - AZest) 
and we consider CAMERA as a possible camera location only 
if Zactual at this POINT lies within this range. 

C. Errors in 4, 
Similar to hi, the effects of errors in 4; are also magnified 

by x and, hence, depend on the distance between CAMERA 
and POINT. The algorithm is very sensitive to errors in 4i. As 
Fig. 9 shows, an error of 0.5" in 4i causes an error of about 
50 m in Zest for the given x, H ,  and hi. Therefore, 4; has to 
be measured accurately or at least represented by a good worst 
case estimate so that, as before, Zest can be compensated for. 

Fig. 8. LIZ,,, versus A h  for different &. - 
Fig. 9. AZeSt versus A@ for different h,.  

In the actual implementation of the algorithm, errors in 4, are 
accounted for by considering the effect of these errors as errors 
in h,. That is, the band h, f Ah, is made wider to account for 
A$,. Hence, the range of acceptable Zest values is increased. 
In the illustrations considered, we find that a Ah, = 3 pixels 
accounts for a 0.5" error in 4, and for a +1 pixel error in h,. 

Another observation from Fig. 9 is that AZ,,, = 0 does not 
always occur at A$, = 0. This is due to the roundoff errors 
in the computation of Zest from +,, H ,  h,, and x, which is a 
reasonably complicated trigonometric expression. 

VII. ILLUSTRATIONS 

The algorithms developed in this research have been tested 
using real terrain data obtained from the USGS of various areas 
in Colorado and Texas using synthetic images generated from 
the DEM. This section details the results of a typical run using 
a DEM of an area in Colorado. The elevation data is a uniform 
square grid of 30-m resolution and has 359 x 457 grid points. 
It covers an area of 148 km2. Synthetic images for an assumed 
camera location are generated from the DEM using the AT&T 
Pixel machine, to serve as the images taken by the robot. 
The elevation data are tessellated into polygons, and surface 
normals are calculated at each of the elevation points using the 
four neighboring points. A light source position and direction 
are assumed, and, for a given camera location and perspective 
geometry, Gouraud-shaded polygons are drawn and projected 
onto the image plane to generate perspective views of the 
mountain range. 

Figs. 10-16 illustrate a typical run of the algorithm. Fig. 
10 shows a typical image used to test the algorithm. Fig. 11 
shows the HLC extracted from this image using a gradient 
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Fig. 10. A typical view. Fig. 12. A top view of the environment of the robot. 

Fig. 11. The extracted HLC. Fig. 13. The possible camera locations after searching in one direction. 

operator. Fig. 12 shows a top view of the environment of 
the robot. In this example, of the possible 164063 (359 x 
457) possible locations, stage 1 of the search process using 
h N  and the associated camera geometry returns 473 points 
as possible camera locations. Fig. 13 shows a top view of 
these locations. These successively drop in the consecutive 
searches that use h, in the other directions. Ultimately, we 
have about eight possible camera locations. Fig. 14 shows a 
top view of these locations. Figs. 15 and 16 show the results 
of the second stage of the search process. The figures show the 
HLC’s of some of the images generated in the north direction 
for the candidate camera locations returned by the first stage 
of the search process. The figures also show a measure of 
the difference between these and the actual image HLC in this 
direction. The measure used is a mean square error between the 
two contours. The candidate with the lowest error, in this case 
48.3442 units, is then considered as the estimate of the camera 
location. The actual position is (200.1,100.5) and the estimated 
location is (201,102)). The four neighbors of this point are 
then considered as candidates; images are also generated in 
the north direction for these positions. The HLC’s are then 
extracted and compared against the original HLC, and the best 
estimate of the location is isolated as the one with the least 
mean square error. 

The results of running the algorithm at various locations on 
the DEM are shown in Table I. As can be seen, in most cases 
the estimated position is quite close to the actual location. We 
then add zero-mean Gaussian noise, with a standard deviation 

Fig. 14. The possible camera locations after searching in all four directions. 

actual location (ZOO.l,lOO.5) 

I candidate location (200,123) 

error = 679.345 units I 

Fig. 15. The disparity between HLC’s. 

of 5, to the horizon lines. This represents the noise in the image 
formation process and the noise in the detection of the HLC. 
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actual location (ZOO.1,lOO.S) 

!-+---I 
actual location (ZOO.1,lOO.S) 

!-+---I 
candidate location (200,102) 

error = 48.3442 units 

Fig. 16. The disparity between HLC’s. 

Since the HLC’s are smoothed by a Gaussian filter and since 
we actually use a band of hi values in the back projection, the 
effects of the additive Gaussian noise are not felt much. As the 
test runs illustrate, the effect of this noise is to shift slightly 
the estimated position in some cases. However, the estimated 
position is still quite close to the actual location in all cases. 
So, the method is quite robust to errors in the imaging process. 
From the table, the average error in the estimated location over 
the nine test runs is computed to be 0.8739 grid points in the 
noise free case and to be 1.83488 in the case with additive 
Gaussian noise (each grid point corresponds to 30 m in the 
DEM). The amount of computation performed by stage 1 is 
also shown in this table as the number of POINT locations 
explored by the search. We note that this is in O ( M N ) .  

VIII. CONCLUSIONS 

This paper presents a novel method for mobile robot lo- 
calization in an outdoor mountainous environment given a 
DEM of the region. It is not assumed that the robot is capable 
of recognizing any landmarks. The height and shape of the 
horizon line in the image plane is used as the main feature, to 
search the DEM for the possible robot location. A constrained 
search paradigm is used to reduce the search space and, hence, 
to speed up the search process. The effect of errors in the 
various parameters on the positional estimation is studied and 
the algorithm is made robust by taking into account the worst 
case errors. The algorithm is tested on the DEM’s of different 
mountainous locations in Colorado and Texas using images 
simulated from the DEM with good success in isolating the 
position. 

In a real-world application it is possible that the HLC’s 
in some of the four principal directions may be occluded; in 
these cases, one possible approach is to interpolate the DEM 
and resample it in different directions in which the HLC is 
more clearly visible. The method is found to be sensitive 
to errors in the tilt angle +i of the camera. However, it is 
possible to measure this angle quite accurately by using a 
precision inclinometer. Also, by back projecting a larger band 
of around the HLC height h, as discussed in Section VI, it 
is possible to account for the errors in the input parameters. 
Sometimes it may so happen that the robot’s location cannot 
be unambiguously established to one location in the DEM but 
only to a set of possible locations. One way to disambiguate 
between all these possible locations is to translate the robot by 

and apply the search strategy again with additional constraints 
imposed by these new measurements. 

Since the method relies on the uniqueness of the horizon 
line, the approach is limited to use in areas of reasonable 
altitude variations. 

APPENDIX 
THE DERIVATION OF Zest 

Here, we derive an expression for Zest from the geometry 
of Fig. 2 using the following variables: 

image plane height 
2 Imax = 

f is the focal length of the camera, 8 is the perspective angle, 
h is the HLC height at the center of the image, is the camera 
tilt angle, H is the altitude of the camera, and x is the distance 
between CAMERA and POINT. The derivation is as follows: 

21 = xs in+  

h 
tan01 = - . t an0  

ImLX 

21 = - 
cos + 

sin(90 + 01) COS(~1) 

sin(90 - (01 + 4)) = y1 ’ cos(& + 4) zz = Y1. 

cos [tan-’ (k. tan o ) ]  
cos [tan-’ (&.tan o + +)I ’ 

-.-. t ano .  - - 
cos+ Imax 

(A31 

Finally from (Al),  (M),  and (A3), we have 

Zest = H + x s i n + + x  

Substituting tan 0 = Imax/f and simplifying, we have 
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