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Abstract. We present an autonomous mobile robot navi-
gation system using stereo fish-eye lenses for navigation
in an indoor structured environment and for generating
a model of the imaged scene. The system estimates the
three-dimensional (3D) position of significant features in the
scene, and by estimating its relative position to the features,
navigates through narrow passages and makes turns at corri-
dor ends. Fish-eye lenses are used to provide a large field of
view, which images objects close to the robot and helps
in making smooth transitions in the direction of motion.
Calibration is performed for the lens-camera setup and the
distortion is corrected to obtain accurate quantitative mea-
surements. A vision-based algorithm that uses the vanishing
points of extracted segments from a scene in a few 3D ori-
entations provides an accurate estimate of the robot orien-
tation. This is used, in addition to 3D recovery via stereo
correspondence, to maintain the robot motion in a purely
translational path, as well as to remove the effects of any
drifts from this path from each acquired image. Horizon-
tal segments are used as a qualitative estimate of change
in the motion direction and correspondence of vertical seg-
ment provides precise 3D information about objects close to
the robot. Assuming detected linear edges in the scene as
boundaries of planar surfaces, the 3D model of the scene is
generated. The robot system is implemented and tested in a
structured environment at our research center. Results from
the robot navigation in real environments are presented and
discussed.

Key words: Motion stereo – Scene modeling – Fish-eye lens
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1 Introduction

The autonomous navigation of mobile robots has attracted
a number of computer vision researchers over the years. A
wide variety of approaches and algorithms have been pro-
posed to tackle this complex problem. Perception and sens-
ing becomes an integral part of computing for such robots
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that navigate in a previously unknown environment. They
must be able to estimate the three-dimensional (3D) structure
of the environment in order to perform useful tasks. The uses
of such an autonomous agent range from providing access to
hazardous industrial environments to battlefield surveillance
vehicles. Various issues must be addressed in the design of
an autonomous mobile robot, from basic scientific issues to
state-of-the-art engineering techniques [11, 24]. The tasks a
mobile robot must perform for successful autonomous nav-
igation can be broadly classified as 1) sensing the environ-
ment, 2) building an environmental representation, 3) locat-
ing itself with respect to the environment, and 4) planning
and executing efficient routes in the environment. Such com-
plex tasks cannot be completely programmed a priori, thus
sensing becomes critical in monitoring both the environment
and the robot’s own internal reckoning system.

The environment in which the robot performs various
tasks determines the techniques used by the robot to navi-
gate. Navigation in indoor structured environments has been
studied by several researchers [9, 16, 40]. Different sen-
sor modalities such as visual sensors (monocular, binocular
stereo and trinocular stereo), infrared sensors, ultrasonic sen-
sors, and laser range finders have been used to aid in the task
of environment representation. The robot can also be assisted
in its navigational tasks by providing it with a priori informa-
tion about the environment. In the absence of a priori model
of the environment, it becomes necessary to rely solely on
sensor information. In navigation tasks, extraction of ac-
curate depth information is important. Sensing has mainly
been accomplished through the use of stereo or monocular
image sequences. Stereo systems establish correspondence
between images acquired from two well-separated cameras,
while monocular systems account for small image displace-
ments.

In this paper, we present a system for autonomous nav-
igation based on binocular stereo using a pair of fish-eye
lenses. No a priori model is assumed, but the problem is
restricted to an indoor structured environment. Navigating
in indoor environments can be very challenging when the
environment is narrow and has corners which require sharp
manuevers of the robot. Conventional visual sensors such as
normal or wide-angle CCD cameras do not provide enough
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Fig. 1. a Image taken by a wide-angle lens at corridor end.b Fish-eye lens
image taken from the same position contains more information about the
corridor

information to make precise measurements close to the robot
and fail to sense areas which exhibit sharp turns in the mo-
tion direction. This difference in information is shown by the
two images in Fig. 1. It shows that fish-eye lenses provide a
large field of view [45] and can sense valuable information
close to the robot and at sharp transitions in the corridor
or passage to be navigated. The system is implemented for
a robot (RoboTex) that navigates through narrow passages
and makes transitions in motion direction at sharp corners
in a structured environment. The lenses are calibrated and
distortion corrected before further processing. A specialized
line detector is used to extract line segments in three sig-
nificant 3D orientations. An accurate estimate of the robot’s
egomotion is obtained from the odometry, corrected by a
vision-based algorithm which uses vanishing points of the
detected lines to accurately estimate the robot’s heading, roll,
and pitch. Correspondence between the extracted features is
established based on an iterative hypothesis estimation and
verification procedure [47]. The estimated 3D segments are
repeatedly updated under ordered constraints with detected
segments from following image sequences obtained after the
motion of the robot.

The rest of the paper is organized as follows: Sect. 2 pro-
vides a survey of relevant work in indoor mobile robot nav-
igation and scene modeling. Section 3 describes the sensor
system used in our work. The stereo setup and characteris-
tics of the fish-eye lens and its advantage over conventional
lenses are discussed. The process of calibration and distor-
tion correction are briefly discussed. Section 4 discusses the
navigation environment. The segmentation approach is de-
scribed and the representation of the environment using 3D
line segments is discussed. Section 5 describes the process
of 3D sensing, modeling and navigation based on stereo.
The stereo correspondence procedure is also discussed. In
Sect. 6, the experimental robot,RoboTex, is introduced and
implementation results of the proposed system are presented.
Finally, conclusions are presented in Sect. 7.

2 Literature survey

Numerous techniques have been studied for mobile robot
navigation in various environments. One of the earliest at-
tempts in indoor mobile robotics was the work of Moravec
[40, 41]. Moravec used a mobile platform as a test bed for

experiments in visual perception and control. The robot was
remotely controlled and equipped with a single video cam-
era. The system used a slider stereovision system to obtain
3D spatial information for navigation. To obtain a stereo
pair through the slider system, the camera was moved along
a track after acquiring one image to generate the disparity
field, which then could be transformed into depth informa-
tion. The mobile robot,Hilare, designed by Giralt et al. [19]
and Chatila and Laumond [9] used dynamic world model-
ing for navigation and world representation. The robot was
equipped with several sensors including a video camera, a
rotating sonar sensor, and a laser range finder. The robot built
a world representation by incorporating any previously un-
known object into a world model, as it was perceived during
navigation. Hierarchical approaches using global and local
model updates based on the sensor data feedback have also
been suggested by Crowley [12] and Parodi [44]. Heuristic-
based approaches to navigation have also been explored by
Chattergy [10]. In general, most algorithms rely on 3D mea-
surements for navigation and scene modeling, but it has also
been shown that similar results can be obtained by using a
single camera with assumptions regarding the 3D environ-
ment [43, 51]. Use of stereovision with line segments to re-
cover passive 3D measurements has also been successfully
used by [23, 26]. The use of trinocular stereo has also been
explored by [1, 14, 17]. Different approaches that have been
studied and experimented for mobile robot navigation can be
classified in three broad categories: model-based approaches,
landmark- or reference-based methods, and trajectory inte-
gration methods. For a detailed survey, refer to [48].

In the work by Kak et al. [28], they present the system
FINALE (Fast Indoor Navigation Allowing for Location Er-
rors). In this approach, they use a Kalman Filter for uncer-
tainty reduction, position estimation and updating. A geo-
metric model of the environments is assumed, and matches
between landmarks from the model and the monocular im-
ages must be determined. The system determines the approx-
imate location of landmarks in the scene by placing bounds
on where one should look for landmarks in the camera im-
age. Given the uncertainty at any location of the robot, an
expected scene model can be constructed and the uncertain-
ties represented by the Mahanabolis distance. Each edge un-
certainty regions are derived based on the vertex uncertainty
regions, and the search for scene correspondents in the the
model can be limited in the images and Hough space. By
analyzing and processing the images only within the uncer-
tainty regions associated with the landmarks, correspondence
is quickly established. With the correspondence established
and using Kalman filtering, it is possible to compute the ori-
entation and location of the robot in the environment. The
authors present real-scene results and also test the accuracy
of their system. Kak et al. [25] have also considered the
navigation of a mobile robot in a structured scene using a
CAD description and a visual camera. The general idea is to
match the observed features in the environment to the CAD
model and thus estimate the robot position. More recently,
the work presented by Bouguet and Perona [7] describes a vi-
sual navigation system using a single camera which utilizes a
special detector to detect the corners of landmarks placed in
the scene. By tracking these detected features, they estimate
the image flow and compute the motion parameters. They
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use a recursive motion estimator and the 3D scene struc-
ture to reconstruct the actual structure of the scene. Dalmia
and Trivedi [13] present a motion and stereo integration ap-
proach to recover the depth in a scene. The authors use the
ability of stereo processing to acquire precise depth mea-
surements along with the efficiency of spatial and temporal
gradient (STG) analysis. STG analysis has been shown to
provide depth with high processing speeds, but limited ac-
curacy. Methods such as normalizing, cross-correlation, etc.
are used for estimating the disparity value. This value is later
used by the STG process to improve the efficiency of the
matching process. Experiments performed validate the inte-
gration approach to estimate depth with a mean error of 3%.
Lebègue and Aggarwal [31–33] have shown a monocular vi-
sion system for navigation and CAD model generation of the
indoor environment. They consider line segments and con-
sider the modeling as surface patches bounded by line edges.
They assume that any indoor scene and the objects within it
can be represented by linear segments oriented in a limited
set of directions. They segment line segments in three 3D
orientations and, based on robot motion and correspondence
over subsequent frames, try to recover the robot position
and the positions of 3D line segments in world space. The
lines are integrated over time and uncertainty is calculated
using the Kalman filtering technique. The robot updates the
world representation at each step, and the final CAD model
is generated when the robot has finished navigating the envi-
ronment. One major drawback in this system is that, due to
the limited view angle of a single wide-angle lens, the robot
is not able to navigate in narrow passages or to make sharp
transitions in its motion direction at hallway corners. It also
cannot accurately map hollow areas in the scene. The CAD
model generated by this system for a hallway is shown in
Fig. 2. The major drawbacks of such a system are that it is
necessary to have a wide area of space available for naviga-
tion. Further, sharp corners and turns cannot be represented
with good accuracy, and the robot cannot navigate around
them due to lack of information. Such limitations have pro-
vided the motivation for the work described in this paper.

3 Visual sensors

The mobile robot is equipped with two fish-eye lens cameras
configured in a parallel stereo geometry. The sensors are
placed so as to maintain a maximum overlap of viewed scene
to establish correspondence. The lenses have a calculated
focal length of 3.8 mm and the stereo pair has a baseline
distance of 398 mm.

3.1 Stereo setup and image information

Using the parallel axis geometry, a disparity value,d, is de-
termined for each matched feature as the difference in their
positions on the same horizontal scan line. Any detected
two-dimensional (2D) feature in an image is considered the
perspective projection of a 3D feature in the scene. In gen-
eral, to recover depth, two images acquired from different
perspectives are used to establish the transformation rela-
tionship between the scene and its projection in the left and

right images. As shown in Fig. 3, a pointP , defined by co-
ordinates (x, y, z) in 3D will project in 2D with coordinates
(xl, yl) and (xr, yr) for left and right images, respectively.
Knowing the baseline distance,D, which separates the two
cameras, and the focal lengthf , we can define the perspec-
tive projections by simple algebra. ConsideringO to be the
origin coinciding with the image center in the left camera:

x = xl.D/d , (1)

y = yl.D/d , (2)

z = f.D/d . (3)

These equations provide the basis for deriving 3D depth
from stereo images.

Fish-eye lenses provide a field of view which approxi-
mates 180◦ in the diagonal direction. Objects very close to
the lens can be imaged with good accuracy. At the same
time the large horizontal view also provides valuable infor-
mation for rotational motions while navigating. This would
not be possible using a normal lens. This is shown in Fig. 1.
It contrasts a scene as imaged by the fish-eye lens (right),
and as imaged by a wide-angle lens (left) from the same
position.

3.2 Calibration and distortion correction

As seen in Fig. 1, the fish-eye lens image exhibits significant
distortion of the information. To make precise quantitative
measurements, it is important that the lenses be accurately
calibrated and that both the extrinsic and intrinsic parame-
ters be measured. The intrinsic parameters to be calibrated
include the optical center, focal length, and one-pixel width.
These are also crucial in successfully removing distortion in
the fish-eye image to recover linear features. The procedure
for calibration is described in [8,45,50]. The distortion cor-
rection is achieved by performing a nonlinear mapping of
points in the image plane. A simultaneous correction of the
radial and tangential offset components is performed using
fifth-order polynomial. The general equations are given as:

θ
′

= aθ + bθ2 + cθ3 + dθ4 + eθ5 , (4)

ρ
′

= fρ + gρ2 + hρ3 + iρ4 + jρ5 , (5)

whereθ
′

is the corrected angle,θ is the original angle,ρ
′

is
the corrected radius,ρ is the original radius, anda through
j are the distortion coefficients. The detailed algorithm is
described in [45, 50]. Figure 4 displays the fish-eye image
on the left, and the corrected image on the right. The black
areas observed at the top and bottom of the corrected image
are due to a field of view larger in the diagonal direction
than the vertical direction.

4 Robot navigation

The robot navigates in indoor structured environments such
as corridors, hallways, etc., based on the 3D information
derived by stereo fish-eye cameras, along with the robot
heading values computed using a vision-based algorithm.
The procedure is described in more detail below.
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Fig. 2. CAD model of hallway by visual navigation using a single wide
angle lens

Fig. 3. Stereo system

Fig. 4. a Inherent distortion in fish-eye image.b The undistorted image

4.1 Environment

Visual navigation in indoor structured environments results
in the representation of many interesting objects and fea-
tures by planar patches bounded by linear edges. The 3D
orientation of thoses edges often falls in a discrete set of
possible orientations. It is seen that an environment such as
a corridor is mainly composed of linear edges with particu-
lar orientations in 3D. There are three preferred orientations
for linear segments that qualify as significant features. The
linear edges are boundaries of opaque planar patches, such
as the floor, ceiling, walls, etc. This not only presents an
accurate representation, but also simplifies the computation.
The particular orientations in 3D considered in our approach
are the vertical and two horizontal orientations perpendicular
to each other.

Under the perspective projection geometry, each 3D ori-
entation corresponds to one vanishing point in the image
plane. This is the point (possibly at infinity) where all the
lines, parallel in one direction, seem to originate from. This
is illustrated in Fig. 5. To segment the images and extract
the line segments, a specialized line detector which uses the
a priori knowledge of the locations of the vanishing points
is used [29]. This process can assign the closest 3D orienta-
tion to each detected segment. In particular, with a pinhole
perspective projection model, lines that are parallel in 3D
will converge to a vanishing point in the 2D projection. If
the orientation of the camera with respect to the scene is ap-
proximately known, one can compute the vanishing points
associated with each given 3D orientation before processing
the image. Line segments detected in three orientations are

grouped according to their most likely 3D orientation and
are considered for the correspondence problem.

4.2 Coordinate system

The fish-eye lens cameras are mounted on the robot, thus
the motion of the robot has to be defined with respect to
the robot platform, and not just the camera system. In order
to use quantitative information, the relationship between the
robot and camera coordinate system must be known. Fig-
ure 6 shows the world and the robot coordinate systems.
The cameras are mounted at two positions on the robot a
fixed distance apart. It is assumed that the camera is rigidly
attached to the robot. Thez-axis is the optical axis of the
camera.W represents the world coordinate system with a
verticalz-axis,R the robot coordinate system,C the camera
coordinate system, andP the image coordinate system. If
the heading, roll, and pitch of the robot are given byh, r,
andp, then the homogenous transformation from the world
to the camera coordinate system is given by

HWC = HWRHRC , (6)

whereHWR is given by

HWR = Tr.

 1 0 0 0
0 cosp sinp 0
0 − sinp cosp 0
0 0 0 1

 .
 cosh sinh 0 0
− sinh cosh 0 0

0 0 1 0
0 0 0 1

 .
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Fig. 5. Vanishing point for semantically significant 3D orientations in a
typical indoor scene

Fig. 6. Coordinate systems

 1 0 0 −x
0 1 0 −y
0 0 1 −z
0 0 0 1

 , (7)

where Tr represents the transformation matrix associated
with the roll of the camera mount, andx, y andz represent
the relative position of the camera mount with respect to the
world. Then, the perspective projection from the camera to
the image plane is given by su
sv
s
1


P

=

 αuf u0 0 0
0 v0 −αvf 0
0 1 0 0
0 0 0 1


 x
y
z
1


C

, (8)

whereu andv represent the coordinates of a point on the im-
age plane (pixels),αu andαv are conversion factors (pixels
per unit length),u0 andv0 are the coordinates of the optical
center of the camera (pixels), andf is the focal length (unit
length). For the relationship between the robot and the cam-
era coordinate system, given the rotation matrixR and the
translation vectorT, the homogenous transformation matrix,
H, is given by

H =

[
R T

0 0 0 1

]
. (9)

To determine the homogenous transformation matrix from
the robot to the camera coordinate system,HCR, we need
to know the transformations between the two camera sys-
tems, HCP, and the transformation between the two robot

coordinate systems,HRC. Then,HCR can be defined by the
relation

HCRHRC = HCPHCR (10)

For the above equation,HRC is known from the robot odom-
etry, andHCP, the camera motion, is to be computed from
the two images. Having computed the intrinsic and extrinsic
parameters at each location of the camera on the robot, the
individual transformation matricesHCi andHCj are known.
Then the transformation between the two camera systems is
given by

HCP = H−1
CiHCj . (11)

The rotation and translation components are then simply
given by

RCRRRP = RCPRCR , (12)

RCRTRP − TCP = (RCP − I)TCR , (13)

whereI is the identity matrix. The camera motion,RCP and
TCP are given by

RCP = RCRRRPR
−1
CR (14)

and

TCP = (I −RCP )TCR +RCRTRP (15)

4.3 Significant line detection

Significant segments in indoor scenes should be those which
consider the geometric features representing the environ-
ment. For navigational purposes, line segments oriented in
three particular directions prove to be useful. Line segments
can be extracted by estimating the location of radical change
in intensity values. Edge locations in any image can be found
by considering the image to be a 2D surface and taking the
second-order derivative in thex andy directions. In our im-
plementation, we use precomputed vanishing points to link
detected edgels to form a line in one of the three orienta-
tions. The vanishing points are determined from the heading
information obtained by calibrating the camera parameters,
and are updated based on the horizontal lines in the im-
age. Given the three 3D orientations, all detected lines must
pass through the associated vanishing point when projected.
Computing the angle between the intensity gradient and the
expected direction of the line in 2D, the expected line can be
given by the current pixel and the vanishing point associated
with the possible 3D orientation. Knowing the homogenous
transformation matrices for changing the world coordinate
system into the projective coordinate system, we can con-
sider px
py
pz
0


W

to be a nonnull vector in the 3D direction under considera-
tion, and if su
sv
s
1


P

= TWP

 x
y
z
1


W

(16)
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defines the relation between a 2D point
[
u v

]T
and its cor-

responding 3D location by the perspective projection, then s′u′
s′v′
s′
1


P

= TWP


 x
y
z
1


W

+

 px
py
pz
0


W

 (17)

defines another point of the estimated 2D line. A 2D vector
j in the image plane pointing to the vanishing point from
the current point is then collinear to[
u′ − u
v′ − v

]
.

Algebraic manipulations lead to

j =

[
ju
jv

]
=

[
ax − azu
ay − azv

]
, (18)

where ax
ay
az
0

 = TWP

 px
py
pz
0


W

. (19)

Note thatax, ay, and az need to be computed only once
for each 3D orientation. A more detailed formulation and
description of the algorithm can be found in [30] and [29].
The fish-eye, undistorted, and segmented images are shown
in Fig. 7.

4.4 Robot pose

Robot orientation is accurately determined by considering
both the odometry and the 3D position estimated by stereo
correspondence. The odometers are placed on the left and
right wheels of the robot and the average of their reading is
taken. Due to slippage, the odometers drift without bounds
over long distances and become unreliable measures. This
drift is periodically corrected by a vision-based algorithm
that computes the heading from the vanishing points of the
extracted lines. To estimate the rotation around the world
coordinate system, the vanishing points in the horizontal di-
rection are considered. The point closest to the image center
is used, and to recover the pitch,p, and heading,h, the
vanishing point (uvp, vvp) is calculated as

uvp = lim
s→∞

su

s
,

vvp = lim
s→∞

sv

s
, (20)

where s, u and v are given through calibration. Now the
pitch and heading can be calculated by

p = tan−1

[
(H1,1H2,0−H2,2T1,0)∗uvp+(H2,1H0,0−H0,1H2,0)∗vvp+(H0,1H1,0−H1,1T 0,0)

(H1,2H2,0−H2,2T1,0)∗uvp+(H2,2H0,0−H0,2H2,0)∗vvp+(H0,2H1,0−H1,2H0,0) ],

h = tan−1
[
H0,1 cosp−H0,2 sinp−(H2,1 cosp−H2,2 sinp)∗uvp

H2,0uvp−H0,0
] , (21)

where,H = HRP, the transformation matrix from the robot to
the image coordinate system, andHi,j are thei, j elements
of the matrix.

Although the path of the robot is calculated at each step
using both the 3D depth estimate and robot pose from van-
ishing point, the initial estimate of motion direction is based
on the estimated depth. When the depth estimated falls below
a threshold, the robot must make a change in its navigating
direction. This change in direction is based on the horizon-
tal depth estimate. After making an initial rotation, the robot
pose is once again estimated and corrected to move towards
the vanishing point.

5 3D sensing

The mobile robot navigates based on extracted 2D features
from the image scene. The parallel-axis stereo system uses
a pair of fish-eye lenses and features in the two images
are matched using an iterative hypothesis verification algo-
rithm [47]. From the line correspondences and the predeter-
mined camera parameters, an inverse perspective geometry
is used to recover the 3D information. The robot then in-
tegrates the information with its pose information and cal-
culates the motion step. The robot then moves to the next
position and repeats the procedure. Already detected 3D seg-
ments are updated based on the 2D segments and their esti-
mated 3D locations computed from the new image obtained
after robot motion. The stereo matching algorithm and 3D
information recovery procedure is discussed below.

5.1 Stereo matching

The analysis of stereo images is a well-established passive
method for extracting the 3D structure of an imaged scene.
The main objective is to recover the 3D position of detected
features from their projections in 2D images. The basic prin-
ciple involved in depth recovery using passive imaging is
triangulation. Here, we present a stereo matching algorithm
for depth recovery in indoor scenes, using a pair of fish-eye
lens cameras.

5.1.1 A brief review of stereo-matching techniques

The computational stereo paradigm consists of three major
steps: stereo camera modeling, feature detection, and match-
ing. The matching process begins with the identification of
the features in both images that correspond to the same point
in the 3D space. This is a difficult problem, as the features
extracted from the two images may be dissimilar, since they
are, in fact, two perspective views taken from two different
view points. Thus, further constraints have to be imposed
and the matching criterion relaxed to resolve ambiguities.
Generally, two broad classes of techniques have been used:
feature-based techniques and area-based techniques. Feature-
based solutions employ simple, geometric primitives such as
line segments and planar patches [20]. Such models are ap-
propriate for simple, well-structured environments consist-
ing of man-made objects. These techniques generally have
been more successful overall, as the matching process is
much faster than the area-based techniques and there are
fewer feature points to be considered [37]. The area-based
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Fig. 7. a Fish-eye image.b The corrected image.c 2D lines extracted in three semantically significant 3D orientations. The dot at the center is the location
of the vanishing point of the horizontal lines going into the image plane

algorithms represent depth at each pixel in the image. These
techniques promise more generality; however, much remains
to be done on both the mathematical and system aspects of
this approach [5,36]. So far, many techniques have proved to
be unsatisfactory, as they produce poorly defined matches,
and thus it becomes difficult to determine when a match
has been established. Area-based techniques are also highly
sensitive to distortion in gray level and geometry, and are
computationally very expensive.

Simple geometric features such as line segments have
been commonly used as matching primitives for feature-
based techniques. Edge segments alleviate the effects of po-
sitional error due to isolated points and support the constraint
of edge connectivity. Medioni and Nevatia [37] use a dis-
parity continuity constraint for their segment-based match-
ing algorithm. Linear edge segments are extracted [42] and
described by the coordinates of their endpoints, their orienta-
tion, and the average contrast in intensity along the normal
of their orientation. Segments in the left and right images
are matched by evaluating a merit function iteratively which
minimizes the disparity difference among matched features.
This algorithm implements the surface continuity constraint
proposed by Marr and Poggio [35]. Another scheme pro-
posed by Mohan, Medioni, and Nevatia [38] detects and
corrects local segment matching errors based on disparity
variation across linear segments. Ayache and Faverjon [3]
use segments described by their midpoint, length, and ori-
entation for stereo matching. A neighborhood graph is used
to store the information regarding adjacency of segments in
each image. A disparity gradient limit criterion is used to
guide the global correspondence search which propagates
matches within a neighborhood to recover 3D segments ly-
ing on a smooth surface patch. Their approach once again
favors matches which make the 3D scene maximally smooth
by maintaining the surface continuity constraint [35].

Many of the area-based techniques make use of the cor-
relation measure to establish matches within a neighborhood
of points in the given images. The Moravec interest opera-
tor [39] was used by Moravec to determine area-based cor-
relation with a coarse-to-fine strategy to establish correspon-
dence between points. The operator measures directional
variance of image intensity in four directions around each
pixel and the corresponding image is searched at various
resolutions, starting from the coarsest. The position yielding
a high correlation is enlarged to the next finer resolution.

Matches above a certain threshold could be accepted. Us-
ing the statistics of noise in image intensities, Gennery [18]
used a high-resolution correlator to produce improved esti-
mates of match points. It also provided an estimate of the
accuracy of a match in the form of variance and covariance
of the pixel coordinates of the match in the corresponding
image. Another correlation-based method was used by Han-
nah [21], which used a modified Moravec operator to de-
termine control points. Autocorrelation was used as a mea-
sure to evaluate an established match. In a later implemen-
tation [22], Hannah implemented a hierarchical correlation
method, where images were smoothed by a Gaussian win-
dow to obtain a lower resolution image. Control points were
once again picked by the modified Moravec operator and the
search for a match was conducted, which would result in a
maximum in normalized cross-correlation with the original
point. The search was propagated up to the finest resolution,
at which point the search was repeated with reversed left
and right images. A detailed survey of various other stereo
algorithms is found in [15].

Most algorithms differ from each other in the way they
define primitives to be matched, their assumptions about the
scene, and their incorporation of a priori knowledge. The
assumptions on which our approach is based include con-
straints on continuity, uniqueness, the disparity gradient, and
epipolar geometry. The stereo system is first calibrated and
the parameters are recorded, thus ensuring that the horizon-
tal scan line in the two images corresponds to the same scan
line in 3D space. This reduces the matching process to a
line-by-line operation, where line attributes depend on their
positions and other constraints that must be satisfied. The
vertical disparity can thus be neglected in further consid-
eration. Although such solutions have been proposed, they
continue to be an issue today due to the complexity of find-
ing the corresponding points or objects in the two images.
Various techniques that have been used include dynamic pro-
gramming [4] and relaxation methods [6, 27, 34].

5.1.2 Our algorithm

We employ a feature-based approach to depth recovery and
use detected line segments as features. The extracted line
segments are grouped according to their most likely 3D ori-
entation. The stereo matching problem is then greatly simpli-
fied. We consider only the lines oriented in the vertical and



166

horizontal direction. The second horizontal direction going
into the image plane is ignored, as no definite starting and
ending point is known and therefore it will give inaccurate
3D information. Further, we are not interested in precise
depth information from horizontal lines, but need only a
guideline in making the transition in motion direction. Cor-
respondence is the most important stage in the process of
stereo computation. Given the two images, correspondence
must be established between detected features that are the
projections of the same physical feature in the 3D scene.
The imaging geometry creates distinct stereo paradigms. The
search procedures are governed by the projection geometry
of the imaging system and are expressed in the terms of
epipolar constraints. Various local properties of the features
must be matched in order to achieve a reasonable accuracy
and success in the local matching process. The global con-
sistency of these local matches is then tested by further con-
straints.

By restricting the matching process between detected line
segments, we obtain coarse features that are also easier to
match. As the line segments are grouped according to their
orientations, the correspondence problem is further simpli-
fied. The correspondence between lines in the two images is
achieved by associating weights to probable matches, which
are calculated based on the disparity estimate, edge intensity
value, length estimates, and the disparity gradient value. The
general paradigm for depth recovery is common to many im-
plementations, but ours is designed to be fast and efficient
without loss of robustness.

Estimating the disparity value prior to the matching pro-
cess provides more efficient feature matching by limiting the
search area to only a certain section of the image. In order
to achieve this, the baseline length of the lenses is calcu-
lated from the hardware setup and the lens calibration. The
maximum search area in the stereo algorithm, which is the
maximum disparity that can be encountered, is calculated as

dispmax = D.f/Zmin, (22)

whereD is the calculated baseline,f is the focal length,
andZmin is the closest possible depth that can be detected.
The search area is further restricted based on the epipolar
line constraint. As the orientation of each line is known,
we can isolate the search to lines of similar orientation for
the purpose of stereo matching. We use the method of iter-
ative search in our stereo algorithm. Based on the value of
maximum disparity, the search is iterated until a match is
established. Knowing the endpoints, we can easily calculate
the length of each line. It is very likely that lines in both the
left and right images will have almost the same length. Thus,
the search is also weighted according to lengths recorded for
each match. The intensity value around the edge point of the
lines is also used to associate weights to each correspond-
ing match. An eight neighborhood of pixels around the edge
point of the line is chosen and a summed intensity value is
calculated. This is done as

Intensityi,j =
n∑
i

n∑
j

aij , (23)

whereaij is the edge pixel. This process is repeated for the
edges of lines in the other image. A value is associated with

the absolute difference of the intensity values between the
two lines as

Ii = ‖li − ri‖ , (24)

whereIi is the intensity value,li andri are the edge intensi-
ties of the left and right line, respectively. Weight is associ-
ated to the matched pair according to the absolute intensity
difference value and the minimum valued pair is chosen as
a probable match. This is expressed as

Mi = arg min

n∑
i

m∑
j

Ii.Wj , (25)

whereMi is the weighted probable match andWj are the
weights associated with the intensity values. This process is
repeated for each line in the database and weights are as-
sociated with each match. The final criterion for associating
weights is based on the disparity gradient between two lines.
Of the probable matches, two lines near to each other are
selected, and one edge of each line is taken into account for
each iteration. The disparity gradient value is then calculated
based on the following equations.Al, Bl, Ar, andBr are
the edge points of the selected lines, where the coordinates
of each point is given as

Al = (axl, ayl);Ar = (axr, ayr) , (26)

Bl = (bxl, byl);Br = (bxr, byr) . (27)

The average coordinates of the two edge points between the
two lines is given by

A = (axl + axr)/2, (ayl + ayr)/2 , (28)

B = (bxl + bxr)/2, (byl + byr)/2 . (29)

Now a separation value is calculated according to

S(A,B) =
√
X2 + Y 2 , (30)

where

X2 = (
axl + axr

2
− bxl + bxr

2
)2 , (31)

Y 2 = (
ayl + ayr

2
− byl + byr

2
)2 . (32)

The disparity gradient is calculated as the ratio of the dispar-
ity between the two edge points and the calculated separation
value. This is given by

Graddisp =
Xl −Xr

S(A,B)
≤ 1 . (33)

The match with the minimum value is associated with the
greatest weight.

The overall criterion for a match is set by examining the
sum of the weights associated with each probable match. The
match with the highest weight is then chosen as the correct
match. The overall aim of the algorithm is to minimize the
difference in the endpoints of the line in the left and right
images and then reinforce the match by minimizing the dif-
ference in the length of each line segment, edge gradient,
and disparity gradient. Thus, the approach of prediction and
recursive verification of the hypothesis is used [2]. We have
found that this procedure results in 98% true matches. Based
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on the matches, we can then successfully calculate the depth
of each segment and construct a map.

The robot moves by taking the stereo image pair at each
step and estimates the 3D scene. While estimating the depth
of various features and the spatial locations, it is necessary to
consider the uncertainty in the position of the robot and the
sensor data. We represent the uncertainty by a multivariate
normal distribution with a mean vectorµ and covariance
matrix

∑
. The probability that a sensed pointz is at p is

then given by

fz(p) =
exp[− 1

2(p− µ)T
∑−1

z (p− µ)]

2π
√|∑z |

. (34)

Given the motion of the robot, we can represent the local
coordinate system with the robot in the center. The frames
between motion intervals can be related by simple transfor-
mations from previous frames. Thus, all features in the 3D
map can be represented by equi-probable ellipses which are
the density contours of the multivariate normal distribution.
Now we can determine the stereo uncertainty in estimating
the 3D structure of the environment. In our stereo algo-
rithm, we determine the location of vertical edges in the
scene. Their 3D location can be associated with the normal
distribution which describes the position uncertainty of the
projected vertical point in 2D. As seen in Fig. 3, the focal
length of the camerasf , and the baseline distanceD be-
tween the cameras is known. The location of the edge point
as projected on the image planexl andxr are measured and
associated with a normal distribution with a meanµxi and
varianceσxi . The location of the point in space is then given
by

p =

(
F (xl, xr)
G(xl, xr)

)
=

(
D
2 (xl+xr)
xr−xl

f − Df
xr−xl

)
. (35)

As this is a nonlinear function ofxl andxr, p will not be
normally distributed, but whenσxi is small, it is possible to
linearize the functionsF andG about the mean ofxl and
xr and thenp will be a Gaussian. The functionsF andG
are linearized by taking the Taylor series expansion and then
the pointsx andy can be given by

x = F (µxl , µxr ) +
∂F (xl, xr)

∂xl
|xl=µxl ,xr=µxr (xl − µxl )

+
∂F (xl, xr)

∂xr
|xl=µxl ,xr=µxr (xr − µxr ) + . . . (36)

≈ D

2
µxl + µxr
µxr − µxl

+
Dµxr

µxr − µxl

2

(xl − µxl )

− Dµxl
µxr − µxl

2

(xr − µxr ) . (37)

Similarly, it can be shown that

y ≈ f − Df

µxr − µxl
− Df

µxr − µxl

2

(xl − µxl )

+
Df

µxr − µxl

2

(xr − µxr ) . (38)

The Jacobian matrix can be now written as

J =

(
∂x
∂xl

∂x
∂xr

∂y
∂xl

∂y
∂xr

)

=

(
Dµxr

(µxr−µxl )2

−Dµxl
(µxr−µxl )2

−Df
(µxr−µxl )2

Df
(µxr−µxl )2

)
. (39)

The covariance of pointp is then given as∑
p

=

(
σxx σxy
σxy σyy

)
= J

(
σ2
xl

0
0 σ2

xr

)
JT . (40)

The covariance matrix can be written as above with the off-
diagonal terms equal to zero, because we assume that the
locations of the edge points in the two images are indepen-
dent. Further, we also assume thatσ2

xl
= σ2

xr = σ2. Now
the uncertainty of any point in space can be calculated and
the precise spatial location in 3D is given by the mean and
covariance of the triangulated point. Thus, the mean of the
point µp is given as

µp =

(
µx
µy

)
=

(
F (µxl , µxr )
G(µxl , µxr )

)
(41)

and the covariance
∑

p is given by∑
p

=
D2

(µxr − µxl )4
σ2

×
(

µ2
xl

+ µ2
xr −f (µxl + µxr )

−f (µxl + µxr ) 2f2

)
. (42)

Each reconstructed edge in 3D space can now be represented
by an ellipse. The size of the ellipses grow bigger in length
with respect to the distance from the robot. It is seen in our
experiments that edges close to the cameras are determined
with higher accuracy and can be represented by smaller el-
lipses. As the distance increases the uncertainty grows very
fast and the lengths of the ellipses increase. A pair of stereo
fish-eye images are shown in Fig. 8. The images are cor-
rected for distortion and relevant segments are detected as
shown in Fig. 9. Stereo correspondence is performed and
the matched line segments from the left and right images
are extracted as shown in Fig. 10. The 3D locations and the
uncertainty associated with the estimates of the matches seg-
ments is shown in Fig. 11.

5.1.3 Fish-eye stereo accuracy

The algorithm was tested on several sets of images and the
uncertainty in the 3D positions of the matched segments cal-
culated. In order to determine the accuracy of the estimated
depth for each line segment, we physically measured the
depths of over 100 detected line segments in several image
pairs. The average of these measurements and the average
error are shown in Table 1.

Results obtained by the fish-eye lens stereo system were
also compared with those obtained by using wide-angle
lenses to determine the advantage of using fish-eye lenses for
autonomous navigation. A similar stereo setup was used with
a pair of wide-angle lenses. A pair of images was acquired
from the same positions as the fish-eye lenses. Once again,
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Fig. 8. Left and right image pair

Fig. 9. Segmented edge maps of the left and right image pair

Fig. 10. Matched vertical segments from the left and right edge maps

Fig. 11. Uncertainty in estimated depth

Fig. 12a,b.Spatial maps;a fish-eye andb wide-angle lens

Table 1. Estimated distance distribution

Detected line classification

Average distance estimation(mm)
Segments: # Estimated Measured Error

Vertical 107 7549.6 8217.3 8.1 %
Horizontal 36 5427.9 6012.7 9.7 %

Total 143 7015.5 7512.6 6.6 %

Table 2. Lens error distribution

Lens classification

Average distance estimated
Dist.:(m) Parameters Fish-eye Wide-angle

Segments 68 47
Less than Estimated(mm) 1636.7 2539.7

4.3 Measured(mm) 1794.3 2859.5
Error 8.7 % 11.2 %

Segments 46 43
More than Estimated(mm) 6516.96 6509.7

4.3 Measured(mm) 7490.16 7159.5
Error 12.9 % 9.1 %

the significant lines were detected and the stereo correspon-
dence established. The reconstructed models are compared
in Fig. 12. For further details refer to [47].

The spatial information for the segments was calculated
and compared to information previously obtained using the
fish-eye lens stereo setup. Further, we compared the esti-
mates of segments in two regions. We considered lines which
were closer than 4.3 m and then those further away. The
breakup in distance is based on the calculated maximum
distance that a lens would see based on our setup, and is
given by the equation

Z = f.D/dmin , (43)

wheref is the focal length,D is the baseline distance, and
dmin is the minimum disparity observed in the image pair.
The results of the comparison are shown in Table 2. We
have found that lines closer to the lens can be estimated
with higher accuracy by using the fish-eye lens, while lines
further away are better estimated with the wide-angle lens.
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Fig. 13. The 3D depth map as estimated from a pair of stereo images

5.2 Depth recovery and scene representation

A projected line in the 2D image represents a plane in 3D.
We consider the two endpoints of each matched line, and
determine its 3D location. Each 3D point is represented by
a vector (x, y, z)T and a covariance matrixcov(x, y, z). Rep-
resenting a 3D line in the parametric form with parameters
(a, b, c), the 3D plane can then be represented by

ax + by + cz = d , (44)

where the uncertainty is captured bycov(a, b, c) andvar(d).
Thus, a plane is defined by each endpoint of a matched 2D
line. Two planes corresponding to the respective endpoint
are represented according to (44). Then, the intersecting line
gives the 3D position of the line. If the two planes are repre-
sented with parameters (a1, b1, c1), and (a2, b2, c2), then the
3D line parameters (a, b, c) can be given by a
b
c

 =

 a1
b1
c1

×
 a2
b2
c2

 , (45)

where× is the cross-product. Figure 13 shows the 3D depth
estimated from a pair of stereo images.

Having determined the 3D positions of detected line seg-
ments, it is necessary to update their locations once the robot
has moved. The locations of various segments have shifted
and their new locations need to be identified. Matching has
to be performed between the new observations with the ex-
isting 3D representation of segments from an earlier image.
With an existing 3D representation and an approximate es-
timate of the camera motion, it is possible to predict the
location of a known edge in the new image. In the event
of a segment being observed for the first time, the 3D loca-
tion can be calculated by stereo correspondence and its 3D
representation updated to the existing segments. The uncer-
tainty for the new segment can be computed and the search
space for the respective segment in new images can be ad-
justed appropriately. In the matching process, the estimated
3D orientation of the 2D segments is used by restricting
the matching between similar orientations. This facilitates a
faster and safer matching process. The order constraint is
also implemented in order to eliminate poor matches. This
constraint states that the order of line segments does not
change from one image to the next. In cases with high an-
gular motion, this constraint may not hold and is relaxed

by reordering the segments based on the projections of the
3D segments. As the 3D orientation of segments is known
a priori, the ordering is unique and simple. They are simply
ordered according to increasing distances.

Establishing a successful match between an existing 3D
segment with the new segments, requires an elimination pro-
cess which disqualifies matches based on several measures.
The segments are represented by a pair of their 2D and 3D
representations and the distance between the 3D segment
and the camera plane is calculated. For a possible match,
the bounds for the distance are set between 0.5 m and 100 m.
This information is useful for the following observations of
the same 3D segment, as it allows for a bound on the search
space within the new image. Therefore, for each segment ap-
pearing in the new image, the 2D lines must lie within finite
bounds. This interval is calculated once for each expected
segment. All segment observations not in the appropriate
interval are rejected as matches. This ensures that segments
are not behind the camera and not too much in front. We
also consider the contrast of the corresponding 2D segment
as a criterion for a possible match. Generally, the contrast
or mean intensity gradient magnitude along the segment re-
mains the same in image sequences, but could change due to
drastic motion. To compensate for such motion, the average
intensity and the contrast along each side of the segment is
computed at a distance of one pixel from the edge. For a pos-
sible match, both the measures should be within 5% at least
on one side of the segment. Furthermore, there should also
be significant overlap between the observed and the existing
segments. The 3D endpoints of the segment are projected to
compute the 2D endpoints and are compared with the end-
points of the observed 2D segment. The ratio of the overlap
is computed and, if the value falls below 0.8, the segment is
rejected as a possible match. Only one-to-one matches are
allowed and the matches are verified by the motion of the
robot as recorded from the odometer readings.

5.3 Scene modeling

Visual navigation in indoor structured environments results
in the representation of many interesting objects and features
by planar patches bounded by linear edges. It is seen that
an environment such as a corridor is mainly composed of
linear edges with particular orientations in 3D. The linear
edges are boundaries of opaque planar patches, such as the
floor, ceiling, walls, etc. Repeated estimation and updates
of the depth map via correspondence of the linear edges at
each step allows the robot to make decisions regarding the
navigable path. As the estimated depth has lower uncertainty
close to the robot, it is possible to navigate in narrow en-
vironments. The robot is allowed to make a translation of
1.0 m at each time step and it is decreased to 0.5 m if a turn
has to be made. To evaluate the possibility of navigation, the
robot relies on cross-matches between detected segments. By
considering segments closest to the approximated vanishing
point, the depth to the segment is estimated. If this segment
is more than 5.0 m away, the robot will decide to make a pure
translation, along with correcting its heading. If the estimated
space is below a certain threshold, the horizontal segments
are considered and the depth furthest from the heading is es-
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timated. This provides for initial motion direction, which is
later updated according to the next image pair. The process
is repeated and the robot can successfully navigate in indoor
environments [46,48,49]. Finally, the depth maps estimated
from the sequence of images are integrated to represent the
model of the environment. By combining the 3D segments
and assuming planar patches between them, a CAD model
representation of the hallway may be constructed.

Knowing the 3D segment representations of the robot’s
environment, the CAD model can be generated by consid-
ering isolated segments. As the model construction is based
on the segments with an uncertainty measure, it is possible
that the resulting model is imperfect. The model will thus
suffer from these shortcomings. Therefore, while generating
the model, certain guidelines are applied.

1. Only well-observed, accurate 3D segments are consid-
ered.

2. A planar surface is hypothesized between any two par-
allel segments.

3. The planar surface is not considered if any other segment
can be seen through it, or if the surface is incompatible
with already established ones.

Furthermore, only vertical segments are considered as

– In a typical corridor scene, over 90 % of the recon-
structed edges are vertical.

– Vertical edges are less likely to be partly hidden
– There could be conflicting information if more than one

orientation was used.
– Floor plans can be constructed with just vertical edges.
– Most robot navigation schemes only use vertical edges.
– The algorithmic complexity of dealing with surfaces in

full 3D is much greater, yet the benefits in practical sit-
uations are minimal.

The consequences of this is that ceilings with different
heights, and uneven ground surfaces cannot be modeled.

While constructing a CAD model, the selected edge seg-
ments have to be relevant for representing a floor plan. The
vertical segments selected have to be between an altitude of
0 and 2 m. This altitude criterion can be changed according
to the minimum height in the environment. All segments
should also have a minimum length to be considered signifi-
cant. Each segment should also have a minimum number of
observations and should not have a large uncertainty value
associated with its location as calculated from the covariance
matrix. A graph of these vertical edges is constructed which
links the segments which have a chance of being connected
by a planar surface in the 3D scene. The surface is defined
as an opaque vertical rectangle, bounded by the floor, the
ceiling, and the extension of the two vertical segments. For
efficiency, this process is done in a 2D floor plan. In 2D,
the segments become points, and surfaces become line seg-
ments. A partially connected graph is chosen to represent
the links. The vertical segments are linked if the sum of the
unsigned differences inx andy coordinates is less than 10 m
apart. This measure was chosen because it favors surfaces
that are aligned with the axes of rectangular buildings.

It is imperative that surfaces not be incorporated between
segments such that vertical segments located beyond the sur-
face are eliminated. Thus, surfaces through which another

vertical segment was observed must be removed. For each
combination of a surface hypothesis, a vertical segment, and
a robot position from which this segment was observed, the
algorithm checks whether the ray connecting the robot and
the segment intersects the surface. If it does, the surface is
transparent, and it is therefore not a valid hypothesis. The
complexity of this search increases with the cube of the
number of vertical segments and with the number of observa-
tions of each segment. Although this may seem high, several
factors contribute to making the total processing time very
short. First, the threshold on surface length eliminates a lot
of unlikely hypotheses for large buildings: asymptotically, it
makes the complexity follow the square of the number of
segments instead of the cube. Second, the average number
of observations for each segment seen in our experiments is
well below 10. Finally, the CAD model needs to be built
only once, after the robot has returned to base. The process-
ing time was found experimentally to be negligible for most
of the scenes. At the end of this processing step, the vertical
segments can be connected by surfaces to any number of
other vertical segments.

The other case for incorrect scene models is where a sur-
face intersects with any other surface. The way to remove
such surfaces is similar to the algorithm where surfaces in-
tersected by an observation ray were eliminated. In such an
event, the graph still contains some unnecessary surfaces.
To remove such artifacts, the algorithm visits each vertical
segment, starting from one of the camera positions. When
going from one segment to the next, the surface that cor-
responds to the rightmost turn is chosen. After each verti-
cal edge has been visited, the surfaces that were not used
are eliminated. This algorithm is very efficient. However, it
still does not eliminate every superfluous plane in the graph.
Although this algorithm would also eliminate intersecting
surfaces, this cannot be guaranteed unless we start from a
fully connected graph. Another possible approach to further
eliminate superfluous planes is to use hidden-line removal
algorithms. This approach is less efficient but more robust
than the previously proposed algorithm. In the present im-
plementation, no superfluous surface removal is performed
beyond the elimination of intersecting planes. The decision
is left to the CAD operator, who can more easily delete extra
surfaces than add omitted ones.

An algorithm estimates a uniform ceiling height using
segments horizontal in 3D. It returns either the minimum,
maximum, or average height of horizontal segments lying
in a range of altitudes corresponding to most ceilings. The
height is used by the next algorithm to extrude the floor plan
into a 3D model. Of course, it is also possible to include the
horizontal segments as 3D lines in the final CAD model
and let a human operator connect them with 3D surfaces.
An important feature of this approach is the creation of a
description readable by most commercial CAD packages.
The DXF file format was chosen for this reason. It is the
native format of AutoCAD (of AutoDesk), and it is read by
many other packages. DXF files are transferred to an Apple
Macintosh and visualized with Virtus WalkThrough. This
package lets users interactively explore a CAD model. Some
difficult architectural scenes cannot be modeled accurately
by the robot. If an edge is never seen by the robot, it would
be difficult to represent that within a model generated from
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Fig. 14a–c.Three successive images from a typical sequence while navigating through a narrow passage

Fig. 15a–e.Five successive images from a typical sequence while navigating and turning at a corridor
end

rest of the observations. One could imagine heuristics to
model unseen elements; however, that approach has several
drawbacks:

– A human operator correcting the CAD model would not
easily know how planar surfaces have been generated. It
would be better for him to see an obvious error than to
see incorrect guesses.

– It is unclear how to deal with imperfectly aligned seg-
ments that are actually part of a wall.

– In many cases, no type of heuristic guessing can give
the right answer.

6 Experimental results

6.1 Platform

The system has been implemented onRoboTex, the TRC-
Labmate-based mobile robot [32].RoboTexis a 1.5 m tall,
tetherless mobile robot, weighing about 150 kg. It is used
as an experimentation platform to demonstrate and test the

vision algorithms presented in this paper. The robot sub-
systems comprise (1) a TRC Labmate base and rigid metal
frame to support the equipment, (2) a fast, on-board HP-UX
735 UNIX workstation to digitize video images and control
the robot, (3) a camera and digitizer, (4) an I/O system, (5)
power supplies which enable completely autonomous op-
eration, and (6) an off-board computing option, remaining
from an earlier version of RoboTex. They are further detailed
in [32].

6.2 Results

Numerous runs were made to qualitatively estimate the accu-
racy of the navigation algorithm.RoboTexwas able to navi-
gate through narrow passages and make rotations at corridor
ends. Figure 14 shows three frames from a typical real cor-
ridor scene which is approximately 72 inches in width, and
has been narrowed to 35 inches. These images are as seen by
the robot during navigation. Figure 15 shows five frames as
seen by the robot as it navigates around the corridor end and
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Fig. 16. CAD model of hallway by visual navigation using stereo fish-eye
lenses

makes a rotation of 90 degrees. These images show quali-
tatively the effectiveness of the algorithm. The accuracy of
the calculated 3D estimates can be found in [47].

The reconstructed model of the 3D scene is shown is
Fig. 16.

An indication of the real-time performance of this system
can be obtained by computing the time taken from acquiring
the images to computing the motion. The following steps
occur during this time:

1. Acquire images from stereo fish-eye lenses.
2. Undistort the images.
3. Segment and extract features.
4. Compute stereo correspondence and 3D estimate.
5. Calculate robot pose.
6. Make motion decision.

On a PA-RISC-based HP-735 workstation running at 99MHz,
the time taken to perform the above is approximately 12 s.

7 Conclusion

In this paper we have presented a system for autonomous
mobile robot navigation based on a stereo pair of fish-eye
lenses that is capable of navigating through narrow corri-
dors, making rotations at corridor ends and reconstructing
3D scene models of the navigated environment. The system
has been implemented for navigation in a man-made envi-
ronment where no a priori map is available. Using fish-eye
lenses, we are able to estimate 3D information at close range
to the robot and to sense the environment in more detail than
is possible by using conventional lenses. The inherent dis-
tortion seen in fish-eye lens images is corrected and line
segments relevant in an indoor scene are extracted. The cor-
respondence procedure is simplified by using a specialized
feature extractor and grouping lines according to their most
likely 3D orientation. The robot pose is estimated using the
3D information and the robot’s odometry is corrected by a
vision-based algorithm. The system is implemented and the

robot successfully navigates through passages with clearance
of 4 inches on either side. The robot also makes rotations of
90 degrees at corridor ends. The algorithm for generating a
CAD model of the navigated environment is also introduced
and the result is presented for a corridor environment.
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