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Abstract--This paper presents a calibration procedure for a fish-eye lens (a high-distortion lens) mounted on 
a CCD TV camera. The method is designed to account for the differences in images acquired via 
a distortion-free lens camera setup and the images obtained by a fish-eye lens camera. The calibration 
procedure essentially defines a mapping between points in the world coordinate system and their corres- 
ponding point locations in the image plane. This step is important for applications in computer vision which 
involve quantitative measurements. The objective of this mapping is to estimate the internal parameters of 
the camera, including the effective focal length, one-pixel width on the image plane, image distortion center, 
and distortion coefficients. The number of parameters to be calibrated is reduced by using a calibration 
pattern with equally spaced dots and assuming a pin-hole model camera behavior for the image center, thus 
assuming negligible distortion at the image distortion center. Our method employs a non-finear transforma- 
tion between points in the world coordinate system and their corresponding location on the image plane. 
A Lagrangian minimization method is used to determine the coefficients of the transformation. The validity 
and effectiveness of our calibration and distortion correction procedure are confirmed by application of this 
procedure on real images. Copyright © 1996 Pattern Recognition Society. Published by Elsevier Science 
Ltd. 

Camera calibration Lens distortion Intrinsic camera parameters Fish-eye lens 
Optimization 

1. INTRODUCTION 

Accurate calibration of an imaging device is of utmost  
importance in computer  vision. Precise camera cali- 
brat ion is needed in various applications which in- 
volve quanti tat ive measurements,  such as stereo vi- 
sion, robot  navigation, inspection and automated  as- 
sembly, and robot  vision. An important  aspect of 
calibration is estimating the internal or intrinsic par- 
ameters of the camera. These parameters determine 
how the image coordinates of any point  may be com- 
puted, given the three-dimensional (3-D) position of 
the point with respect to the camera. The estimation of 
the geometric relation between the camera and the 
scene is also an impor tant  aspect of the calibration 
procedure, and the parameters which characterize this 
relation are termed the external or  extrinsic par- 
ameters. The estimation of extrinsic parameters has 
been well studied in the past and will not  be detailed 
in this paper. On  the other  hand, researchers have 
neglected the estimation of intrinsic parameters, 
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which in fact are crucial to a precise quantitative 
analysis. 

Most  cameras are not  perfect and tend to show 
a variety of distortions and aberrations. Fo r  geometric 
measurements, the most  important  issue is the distor- 
t ion that the camera exhibits. The cameras most com- 
monly used have off-the-shelf lenses that exhibit a sub- 
stantial amount  of distortion. The camera assembly is 
often misaligned internally, and the C C D  sensing array 
may not  be or thogonal  to the optical axis of the lens. 
Similar characteristics are inherent to the fish-eye lens 
camera, thus making it important  to establish an 
efficient method  of calibration before determining the 
camera distortion coefficients. The fish-eye lens proves 
to be useful where a large field of view is required, since 
it provides a field of view which is approximately 180 °. 
When the distance between the lens and the object is 
small, a fish-eye lens can provide a full view of the 
object where other lenses fail to do so. To obtain 
accurate quantitative measurements from fish-eye lens 
images, we have to calibrate certain camera para- 
meters so that we can accurately transform the image 
plane coordinates of the object into the 3-D world 
coordinates. 

Although fish-eye lenses provide for a large field of 
view ( ~  180°), they introduce significant distortion in 
the image, as seen by comparing Figs 1 and 2. 
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Fig. 1. The calibration pattern. 

Figure 1 shows an image of the calibration pattern 
taken by a normal lens which introduces minimal 
distortion, while Fig. 2 shows an image of the same 
pattern taken by the fish-eye lens. The distortion re- 
sults in a shifting of pixels from their orginal positions 
and the image tends to bend away from the optical 
center. The distortion seen is known as barrel distor- 
tion. Clearly, it is evident that correction of the image is 
important when using a fish-eye lens. In order to 
establish the camera model for the fish-eye lens cam- 
era, the intrinsic parameters must be determined and 
the distortion analysed. The parameters that need to 
be calibrated are: 

(1) effective focal lengths, 
(2) one-pixel width on the image plane, 
(3) optical center, 
(4) distortion coefficients. 

This paper presents a simple and effective calibration 
method of intrinsic parameters for high distortion lens 
cameras. 

This paper is organized into the following sections: 
Section 2 briefly reviews the previous work done in 
camera calibration, including the different distor- 
tion types involved. Section 3 describes the camera 
calibration method. The procedures for determin- 
ing the optical center, the effective focal length, 
one-pixel width on the image plane, and evaluating 
the distortion coefficients employed for distortion 
correction are presented. The relation between 
the image plane points with their respective 3-D 
world coordinate points is also discussed. Section 
4 presents the experimental results of the calibration 
procedure. Our method for testing the accuracy 
of the calibration procedure is described and its 
results are presented in Section 5. Finally, Section 
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Fig. 2. Calibration pattern as imaged by fish-eye lens. 

6 summarizes the calibration method, along with con- 
clusions. 

2. PREVIOUS WORK 

In order to correct the inherent distortion of the 
fish-eye lens, it is important that each pixel in the 
distorted two-dimensional (2-D) image (x, y) be map- 
ped to its original position from the 3-D scene (X, Y, Z) 
projected onto a 2-D plane (x', y') based upon the ideal 
pin-hole camera model. Each pixel in the image plane 
is shifted to a different position in the image due to the 
effects of distortion, which is mainly a result of the 
curvature of the lens. 

Beck (1) and Miyamoto (2) describe several mapping 
methods which relate the angle in the world plane to 
a corresponding angle in the image plane. The angle in 
the world plane is the angle between the line that 
connects any point in the real world with the optical 
center and the optical axis, while its corresponding 

angle in the image plane is the angle between the line 
connecting the projection of that point in the image 
with the optical center and the optical axis. This is 
schematically shown in Fig. 3. The relation 
2tan(~b'/2)=tan(qS) is used in the stereographic 
method, where q~' is the angle in the world plane and 
~b is the angle in the image plane. Using this mapping, 
a small circle in front of the camera always maps to 
a small circle in the image plane, but as the circle moves 
away from the center, the diameter in the image plane 
will change. In their equidistant projection method, 
the appropriate relation q~'= tan(q~) is used. In this 
mapping the small circle in the 3-D plane maps to an 
ellipse-like figure in the 2-D plane when the circle 
moves towards the edge and one of the diameters in the 
image plane stays constant. These methods correct the 
image near the optical center, but towards the image 
edge the distortion remains significant. Anderson, A1- 
vertos and Hall (3) present a method in which the 
relationship between ~b' and q~ is established based on 
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Fig. 3. World plane to image plane angle mapping. 

Snell's Law. Again, the transformation applies to 
a limited region around the optical center, where the 
distortion is relatively small. It  may be emphasized 
that when mapping corresponding angles, it is as- 
sumed that the image exhibits only radial distortion. 

Tsai (4'5) handled both extrinsic and intrinsic par- 
ameters in his calibration method. The extrinsic par- 
ameters are the rotation and translation matrices, 
while the intrinsic parameters are the effective focal 
length, one-pixel width on the image plane, optical 
center, and the distortion coefficients. Tsai's method is 
complicated and requires special techniques such as 
frequency measurement or 1-D F F T  (5~ for the calibra- 
tion of one-pixel width. Error also arises in the case of 
high-distortion lenses. ~4) Thus, a robust calibration 
procedure for high-distortion lenses has not been well 
established. (6) 

Weng et al. ~7~ described several camera models, in- 
cluding radial, decentering, thin prism, and total dis- 
tortion. Most commonly used methods discuss only 
the problem of radial distortion, but in our case a tan- 
gential component is introduced along with the radial 
distortion. This is theoretically known as decentering 
distortion. Actual optical systems are subject to vari- 
ous degrees of decentering, that is, the optical centers 
of the lenses are not strictly collinear with the CCD 
array. Here the pixel shift is away from the optical 
center and the new position lies at a new angle location 
as measured from the optical center. This kind of 
distortion can be analytically described by the follow- 
ing expressions: (s'9) 

6pa = 3(j lp 2 + j 2 p  4 + . . . ) s in(O --  ~ ' )  (1) 

6ta = ( j l p  2 + j z p  4 + . . . ) c o s ( ¢  --  t~') (2) 

where 6pd is the radial distortion, 6ta is the tangential 
disortion, p is the distance to the pixel from the optical 
center, ~ is the angle between the pixel and the optical 
center, and Jl,  Jz,-..are the distortion coefficients. ~' is 
the angle between the positive vertical axis and a line of 

reference which has the maximum tangential distor- 
tion. 

The following section presents a method based on 
polynomial transformation for correcting the distor- 
tion in the images. The mapping is applicable to the 
complete image. Inverse mapping of the distortion 
coefficients is used to reconstruct the full gray scale 
undistorted image and the accuracy of the algorithm is 
then tested. 

3. C A M E R A  C A L I B R A T I O N  

This section presents the method for determining 
the optical center, the effective focal length, and one- 
pixel width on the image plane. It describes the calibra- 
tion pattern used in the experiments and the method 
for correcting the barrel distortion. 

3.1. T h e  opt ical  center  

The optical center of any lens is defined as the point 
where the optical axis passing through the lens inter- 
sects the image plane of the CCD camera. The method 
we use is similar to Chang et al. (1°~ The optical center is 
found with the use of a low power laser beam. The 
setup is shown in Fig. 4. Initially, the iris of the camera 
is shut to avoid damage to the C C D .  A low power laser 
beam is passed through a perforated white screen onto 
the center of the lens. The beam is partially reflected 
onto the white screen, forming a fringe pattern. The 
aim is to minimize the fringe pattern to a dot, thus 
ensuring that the beam is focused at the center of the 
lens. The pan and tilt of the laser beam, along with that 
of the lens, are adjusted until the laser beam reflects 
onto itslef. The goal is to align the laser beam and the 
optical axis of the lens. Once this is achieved, the laser 
beam is passed through an attenuating filter to lower 
the power of the laser beam to avoid damage to the 
CCD array. The iris is then opened slightly to capture 
a bright dot on the image plane. This dot indicates 
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Fig. 4. Setup for optical center determination. 

Fig. 5. The optical center. 

the location of the optical center in the image plane. 
Figure 5 shows the image taken. The dot represents the 
optical center in the image plane. This method gives 
accurate and repeatable results. ~10) 

3.2. The focal length 

We compute the focal length by assuming minimum 
distortion in the neighborhood of the optical center. 
This assumption is based on a pin-hole model camera. 
This implies that the points or pixels close to the 
optical center show negligible distortion or, ideally, no 
distortion. Thus, data points close tothe optical center 
have to be imaged. This is done by aligning the lens 
with its optical axis perpendicular to the calibration 
pattern. A mirror is placed on the calibration pattern 
and its live image is grabbed. Further, a cross-hair is 
displayed on the screen whose intersection is at the 
optical center of the lens. Using this view, the lens is 
aligned such that the lens sees itself in the mirror at the 
center of the cross-hairs. The cross-hair is to be aligned 
with its reflection and, as there is negligible distortion 
at the optical center, the horizontal and vertical lines of 
the cross-hair should intersect each other on the screen 
for points close to the optical center. The center dot in 
the calibration pattern image is also aligned in the 
center of the cross-hairs. This ensures that the center 
dot will not get distorted, nor will the dots in its 
immediate neighborhood. Once the lens is aligned, the 
distance D between the camera and the pattern is 
physically measured. Ly is defined as the distance 
between two points in the vertical direction lying close 
to the center of the pattern, and I v is the distance in 
pixels between their perspective projections. The dis- 
tances are represented by the schematic in Fig. 6. 
Assuming zero distortion near the center, the focal 
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Table 1. Determined one-pixel height and width 

Pixel Values (mm) 

Width 0.017 
Height 0.013 

length is defined by 

f = (lvdr)D/Ly (3) 

where dy is the known one-pixel height on the image 
plane determined from the camera specifications. 

One-pixel width on the image plane, dx, cannot be 
determined from the camera specifications due to an 
imperfect match between the computer image acquisi- 
tion hardware and the camera hardware. During 
scanning, spatially discrete signals picked up by each 
row of the sensor array are first converted to an analog 
waveform, which is then sampled by the computer 
image acquisition hardware into a number of spatially 
discrete samples and stored in a row of a image frame 
buffer. The number of sensor elements in a row of the 
sensor array and the number of picture elements in 
a row of the computer image frame buffer may not be 
same. In our case the buffer of the frame grabber is 
512 × 484 while the size of the CCD array resolution is 
510 x 492. Therefore, one must determine the one- 
pixel width on the image plane. The dx is determined 
with the same lens setup used in focal length determi- 
nation. This time, two horizontal data points close to 
the center are chosen as shown in Fig. 6. The one-pixel 
width in the image plane is then given by the relation 

dx = (L:,f)/(Dlh). (4) 

Here, L x is the physical distance between the two 
horizontal points, f is the focal length computed ear- 
lier, and lh is the horizontal distance in pixels as seen in 
the image plane. In our setup, Lx = Ly as we use 
a pattern which has equally space dots. The values 

calculated for the one-pixel width and the given one- 
pixel height are shown in Table 1. 

3.3. The calibration pattern 

The calibration pattern consists of a grid of black 
dots placed every 10 cm, as shown in Fig. 1. The size of 
our pattern is 2.4 x 1.8 meters, which is about the size 
of the normal view seen by the lens. Each dot is used as 
a data point for image correction. As the calibration 
pattern is flat, and there is no variation in depth for any 
of the data points, it is easier to map its projections in 
the image plane. Further, by capturing just one image, 
sufficient data points are generated, so that repeated 
experimentation is avoided. 

3.4. Distortion correction procedure 

It is clear from the image acquired by the fish,eye 
lens that the lens exhibits distortion which may be 
represented in the polar domain. There is a transform- 
ation of angles along with relative distances. This is 
examined by taking data points from the calibration 
pattern and relating them to angles and pixel distances 
in the image plane to generate the distortion coeffi- 
cients needed to correct the distortion. Since a combi- 
nation of radial and tangential distortion is seen in the 
image, two sets of coefficients are needed to correct the 
distortion. If the distortion is symmetric in the four 
quadrants, then only one quadrant may be analysed. 
We use a polynomial transformation to correct the 
barrel distortion. A fifth order polynomial is used in 
this case to ensure the accuracy needed for precise 
calculations from the image. There is a trade off be- 
tween the use of low order and high order polynomials. 
The former does not correct with the accuracy needed, 
while the latter makes the calculations computation- 
ally more expensive. The fifth order polynomial pro- 
vides the best balance of accuracy and time taken for 
correction. We use two polynomials, one to correct the 
radius as measured from the optical center, and the 

Tangentially Distorted Position 

Fig. 7. The distortion model. 
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other to correct the polar angle as measured from the 
optical center. The polar angle is defined as the angle 
subtended by the line joining the projection of any 
point on the image plane and the optical center in the 
image plane. This angle is defined as 0, and 0' is the 
corrected angle. Similarly, p is the distance measured 
from the point projected in the image plane to the 
optical center, while p' is the corrected distance. The 
distortion model and the respective angles are shown 
in Fig. 7. Thus, we simultaneously correct the radial 
position of each pixel and at the same time correct the 
tangential offset component. The general equations 
used are: 

O' = aO + bO 2 + cO 3 + dO 4 q- eO 5 (5) 

p, = f p + gp2 _}_ hp3 + ip4 + jpS (6) 

where 0' is the corrected angle, 0 is the angle as imaged 
by the fish-eye lens, p' is the corrected radius, p is the 
radius as viewed by the fish-eye lens, and a through 
j are the distortion coefficients. In the above equation, 
we do not have a constant term, as the distortion at the 
optical center is zero. From the calibration pattern, the 
actual position of each dot is computed based on the 
pixel width and the pixel height. The location of each 
distorted black dot is also calculated from the image. 
In this manner, the distortion data is generated, and 
using a repeated Lagrangian minimization procedure, 
the distortion coefficients are estimated. These coeffi- 
cients are further optimized by using a priori knowl- 
edge. Imaging three data points in a straight line 
should result in them being in a straight line in the 
image plane. The difference in the slopes of lines pas- 
sing through the first two and the last two data points 
is minimized until it reaches zero, thus optimizing the 
accuracy of the transformation polynomial. This step 
ensures that the polynomial coefficients that are deter- 
mined are not an overfit to the data. This method also 
compensates for any accuracy errors that might be 
present while determining the image point correspon- 
dences to their respective locations on the calibration 
pattern. Finally, the technique of inverse mapping is 
used to recover the complete gray-level image. 

3.4.1. Lagrange minimization. Having established 
the point correspondences in the original pattern and 
the distorted pattern, we have a data set which indi- 
cates a certain transformation. To represent this trans- 
formation with an optimal polynomial and determine 
the distortion coefficients, the method of Lagrange 
minimization is used. For our data points, there is only 
one polynomial of the fifth order that passes through 
all the points. This polynomial is approximated by the 
function: 

F,(x) = ~" Y,(x)f(xr) (7) 
r = O  

where Y, is the Lagrange formulation term, f (xr)  is the 
data point at r, and F,(x) is the coefficient of the 
polynomial. The Lagrange formulation term is given 

by: 

n X - -  X s 

Y,(x)= IF[ ~ .  (8) 
s ~ r , s = O  r - -  s 

The above formulation can be generalized to deter- 
mine the polynomial of the required order. For the 
case of a second-order polynomial the formulation can 
be expressed as: 

( x -  x l ) ( x  - x 2 )  r ,  • 

Vz(x) - (x~-- x ~  0 ~ )  Jtx°)  

(x - Xo)(~ - x~) 

(x 1 - Xo)(X 1 -- x2) f ( x l )  

( x  - X o ) ( X  - x l )  ~ ,  , 
-t (~z ~ ~ ) j t x z )  (9) 

where x, and f (xr)  are the points in the data set 
representing the transformation. 

3.4.2. Inverse mapping. The distortion coefficients 
determined above form a transform from the distorted 
image to the corrected image which represents a one- 
to-one mapping. The mapping so established forms 
a new image which is four times the size of the original 
image. As there are fewer points to map, we see the 
presence of blank spots in the corrected image. It is 
essential to recover the complete gray-scale image to 
do any further processing based on intensity values. To 
achieve this objective, we use the technique of inverse 
mapping, which forms a mapping of points corre- 
sponding to the new locations of the pixels in the 
undistorted image. The distortion correction coeffi- 
cients are then determined by considering the pixel 
locations in the undistorted image and its correspond- 
ing mapping in the distorted image. Thus a new trans- 
form relationship between the undistorted and the 
distorted image is established which has a many-to- 
one relationship. This results in the mapping of one or 
more pixels in the undistorted image to a single pixel in 
the distorted image. The coefficients so determined are 
the inverse coefficients of the transform and are able to 
reconstruct the complete gray-level intensity of the 
corrected image. 

3.5. Coordinate system 

In order to accurately determine the location of any 
point in 3-D space, it is important that we know the 
precise location of the camera and its viewing ge- 
ometry. To better understand the transformation of 
points from the 3-D space to their corresponding 
position in the image plane, we briefly discuss the 
camera coordinate system. 

The camera and the world coordinate system used 
are shown in Fig. 8. W represents the world coordinate 
system with a vertical z-axis, M the camera mount 
coordinate system, C the camera coordinate system, 
and P the image coordinate system (used for the 
perspective projection on the CCD of the camera). Let 
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Pw: World Point 
Pi: Image Point 
(X,Y,Z): World coordinate system 
(x,y): Image coordinate system 

Fig. 8. Camera coordinate geometry. 

h, r and p represent the heading, roll and pitch of the 
camera mount.  The transformation from W to C is 
given by: 

Twc= TwMT~c. (10) 

TwM, the homogeneous coordinate transformation 
matrix from W to M is given by: 

1 0 

0 cos p 
TwM= Tr" 0 -sinp 

0 0 

0 
1 

0 

cos h sin h 

- sin h cos h 

0 0 
0 0 

0 0 

sin p 0 

cos p 0 

0 1 

0 0 - x  1 
1 0 - y  (11) 
0 1 - z  ' 

0 0 1 

where T, represents the transformation matrix asso- 
ciated with the roll of the camera mount,  p and h repre- 
sent the pitch and heading of the camera mount,  and x, 
y and z represent the relative position of the camera 
mount  with respect to the world. T~c, the coordinate 
t ransformation matrix from M to C, is completely 

determined through eye-mount calibration which is 
similar to the procedure detailed in references (10, 11). 
Finally, the perspective projection from camera to 
image plane is given by: 

vs :t l 0 0 ili  ] = 0 v° -- c~vf (12) 
0 1 0 

1_ lp_l 0 0 0 lc 

where u and v represent the coordinates of a point on 
the image plane (pixels) % and ev are conversion 
factors (pixels per unit length), u o and v o are the 
coordinates of the optical center of the camera (pixels), 
and f is the local length (unit length). These para- 
meters are determined through the calibration of the 
camera as described above, s represents the depth, and 
therefore cannot  be determined from a single image. 

4. RESULTS 

The fish-eye lens used in the experiments is manufac- 
tured by Toyo Optics and has an effective calculated 
focal length of 3.8 mm. The horizontal  field of view of 
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Fig. 9. Corridor as imaged by the fish-eye lens. 

the lens is ~ 138 ° and the diagonal field of view is 
178 °. The lens is mounted on a Panasonic solid-state 

CCD camera with 510 x 492 image sensing elements. 
The CCD has a scanning area of 6.6 x 8.8 mm z and the 
image buffer used is 512 x 484 pixels. 

Figure 9 shows a 512 x 480 image of a corridor 
taken with the fish-eye lens. One can see the bending of 
various structures due to excessive barrel distortion. 
This image was corrected using the polynomial trans- 
formation. The corrected image is as seen in Fig. 10. 
Each pixel in the distorted image is corrected and 
mapped to the new image. When corrected, the image 
generated is more than four times the size of the 
original image. In Fig. 10, the size is restricted to 
1024 x 960 pixels. As shown, many blank pixels have 
been introduced into the corrected image. This is due 
to the fact that the original image has only 512 x 480 
pixels to be mapped on to the new, larger image. We 
can also see blank areas in the horizontal and the 

vertical image ends due to the larger field of view in the 
diagonal direction than any other direction. 

The problem of blank pixels is solved by using 
inverse mapping, as discussed earlier. A mapping relat- 
ing the pixel location in the final corrected image to the 
pixel location in the distorted image is used to deter- 
mine the coefficients of the polynomial. The distortion 
coefficients are then applied to find a pixel location in 
the original image from the pixel location in the final 
corrected image. Thus it is possible that several pixels 
in the final image may map to the same pixel in the 
original image. In this way, all the pixels in the new 
image are mapped, thus generating a complete, undis- 
torted image. Even with this mapping, the blank areas 
at the horizontal and vertical ends cannot be elimin- 
ated. To remove blank area we limit the size of the new 
image to that of the old image. As seen in Fig. 11, little 
information is lost, and the problem of barrel distor- 
tion is resolved. The distortion coefficients used for 
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Fig. 10. Corrected image of corridor (1024 by 960). 
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Fig. 11. Corrected image using inverse mapping. 
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Table 2. Radial distortion coefficients used for image correction 

Coefficients 

Distortion a b c d e 
Radial 0.81035 -6.2546e-2 0.26003 -0.12455 2.1225e-2 

Table 3. Tangential distortion coefficients used for image correction 

Coefficients 

Distortion f g h i j 
Tangential 1 .14190 -0.74194 0.53545 --0.15083 1.17113e-2 
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Fig. 12. Corrected image of corridor using a 5th order (left) and 7th order (right) odd powered polynomial. 

image correction are given in Tables 2 and 3. Coeffi- 
cients a to e are used for correction of radial distortion, 
while the coefficients f to j are used for tangential 
distort ion correction. 

in  order to determine the symmetry of the distor- 
tion, we consider a polynomial  of odd powers. Such 
a polynomial  would result if the distortion exhibited is 
radially symmetric. Once again a Lagrangian minimiz- 
ation is performed to determine the coefficients of the 
odd powered polynomial,  and even powers are set to 
zero. We consider both a fifth order polynomial  and 
a seventh order polynomial. The corrected image using 
a fifth order and seventh order odd powered poly- 
nomial  is seen in Fig. 12. The images still exhibit 
distort ion and the correction is not  adequate. This 
shows that the distortion seen, known as barrel distor- 

tion, is not  entirely radially symmetric and exhibits 
a combinat ion of distortions. 

The algorithm is implemented on a H P  735 work- 
station and the image correction takes approximately 
4 s .  

5 .  A C C U R A C Y  

To test the accuracy of the corrected image, a series 
of images was taken at 1 meter intervals (Fig. 13) and 
the line segments were detected (Fig. 14). Actual 
lengths of the edges in the horizontal  and vertical 
direction were measured in the real world, and their 
distances from the lens were recorded. All segments 
which did not  have known end points were neglected. 
Next, each segment in the image plane was measured. 
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Fig. 13. Images taken at 1 meter interval. 
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Fig. 14. Line detected images. 

Their  length was computed using the equation: 

I x = ( f L x ) / ( Z d x )  (13) 

o r  

ly = ( f L r ) / ( Z d , )  (14) 

where f is the effective focal length of the lens, L x and 
Ly is the horizontal  and vertical length respectively, of 
the edge in the real world, Z is the distance of the edge 
from the lens in the real world, and d x is the pixel width, 
in the case of a vertical edge, and dy is the pixel height, 
in the case of a horizontal  edge. The computed lengths 
were compared to the actual measured lengths in the 
real world and an accuracy of within 2% was estab- 

lished, with the maximum error occuring towards the 
edge of the image. Table 4 shows the distribution of 
detected segments and the average error in length 
calculation. 

Table 4. Length error distribution 

Detected line classification 

Average length distribution (mm) 
Segments # Length Det. length Error 

Vertical 23 1473.2 1449.8 1.6% 
Horizontal 17 515.96 509.7 1.4% 
Total 40 1990.16 1959.5 1.54% 
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6. CONCLUSION 

In  this paper ,  we have presented a simple but  effec- 
tive procedure  for the ca l ibra t ion  of a h igh d is tor t ion  
lens. The  de te rmina t ion  of intr insic parameters  using 
a simple cal ibrat ion procedure is addressed. The para-  
meters  ca l ibra ted include the d is tor t ion  coefficients, 
the optical center, the effective focal length, and  the one 
pixel width  on  the  image plane. A camera  model  for 
fish-eye lenses is presented and  the d is tor t ion  charac-  
teristics are analysed. In the ca l ibra t ion  procedure,  the 
po lynomia l  t r ans fo rmat ion  is calculated for a camera  
which has  two componen t s  of dis tor t ion,  radial  and  
tangential .  The po lynomia l  is calculated using Lag- 
range  min imiza t ion  and  the coefficients are fur ther  
opt imized using a priori  informat ion.  The technique  of 
inverse m a p p i n g  is used to account  for the b l ank  areas 
in the und i s to r ted  image and  to recover a complete  
gray-level image. The  ca l ibra t ion  procedure  is success- 
fully applied to real world  images acquired using the 
fish-eye lens, and  the accuracy of the correct ion is 
established. 
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