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Abstract— In this paper, we propose a facial expression classi-
fication method using metric learning-based k-nearest neighbor
voting. To achieve accurate classification of a facial expression
from frontal face image, we first learn a distance metric
structure from training data that characterizes the feature space
pattern, then use this metric to retrieve nearest neighbors from
training dataset, and finally output the classification decision
accordingly. An expression is represented as a fusion of face
shape and texture. This representation is based on registering
a face image with landmarking shape model and extracting
Gabor features from local patches around landmarks. This
type of representation achieves robustness and effectiveness by
using an ensemble of local patch feature detector at a global
shape level. A naive implementation of metric learning-based
k-nearest neighbor would incur a time complexity proportional
to the size of the training dataset, which precludes this method
being used with enormous dataset. To scale to potential larger
databases, an approximate yet efficient variant scheme of ML-
based kNN voting is further devised based on Locality Sensitive
Hashing (LSH). A query example is directly hashed to the
bucket of a pre-computed hash table where candidate nearest
neighbors can be found and there is no need to search the entire
database for nearest neighbors. Experimental results on Cohn-
Kanade database and Moving Faces and People database show
that both ML-based kNN voting and its LSH approximation
outperform the state-of-the-art, demonstrating the superiority
and scalability of our method.

Keywords- Metric Learning; K-Nearest Neighbor; Gabor
feature; Locality sensitive Hashing; emotion recognition

I. INTRODUCTION
Human emotion recognition has long been an actively

researched topic in Human Computer Interaction (HCI).
Unlike other types of non-verbal communication, human face
is truly expressive and facial expressions are closely tied
to emotional state. The ability to interpret non-verbal face
gestures is key to a wide range of HCI applications. The
promising future of emotion-aware machine intelligence has
propelled researchers to build computer systems to under-
stand and use this natural form of human communication
[3].

An effective representation of facial expression is a vital
component of any successful facial expression recognition
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system. Various models and methods have been proposed to
attack this problem. Seeing from a geometric perspective,
model-based approaches, as in [8]–[11], iteratively register
face with a deformable shape model and capture the holistic
geometric variation aspects of an expression. Appearance-
based approaches consider the varying pattern of pixel in-
tensities as the distinguishing traits of an expression and
design feature detector for local skin patches, examples of
which include SIFT [12], Local Binary Pattern [13], Local
Directional Pattern [14], etc. To draw on the descriptive
power of both shape and texture, [27], [28] use a combination
of shape and texture model.

In our method, a hybrid representation of facial expression
is also used by fusing a shape model of landmark points
and an underlying appearance model of local patches of face
images.

A good expression recognition methodology should con-
sider classification as well as representation issues [1]. Dono-
hue et al. [4] used the back-propagation algorithm to train
a neural network, and a recognition rate of 85% based on
20 test cases was reported. Kotsia et al. [5] used Support
Vector Machine to classify geometric deformation features.
In [22], Condition Random Fields are used to model the
temporal variations of face shapes and make classification
accordingly. Previous methods have demonstrated satisfac-
tory categorization performance on exaggerated expressions.
As categorization samples the semantic space more densely
and naturally induced expressions are involved, expression
classification becomes quite difficult and previous methods
are subject to severe accuracy degradation.

We consider facial expression classification in the frame-
work of measuring similarities. While nearest neighbor is a
natural choice in this setting, its classification resolution is
limited since there exists much overlapping between subtle
expressions. Thus, a metric structure that adapts to the feature
space embeddings is preferred over the default Euclidean
metric as a measure of similarity. Inspired by the success
of Metric Learning (ML) in semantic image classification
[24], we propose an expression classification method based
on ML. In particular, a generalized Mahalanobis distance ma-
trix is learned that satisfies pairwise similarity/dissimilarity
constraints on distance between expression feature vectors.
Afterwards, a kNN classifier equipped with this distance met-
ric is used to assign majority class label to query expression.



(a) Neutral (b) Anger (c) Disgust (d) Fear (e) Hapiness (f) Sadness (g) Surprise

Fig. 1: Face shape of seven basic expressions (including neutral). Red denotes the mean shape of that particular expression.

As far as we know, this is the first time ML has been
used for expression recognition. Our ML-based kNN clas-
sifier can be used either as an expression detector, where a
single category is discriminatively trained against all other
categories, or as a multi-class classifier, where the metric
structure for multiple expressions are simultaneously learned.
The latter approach has the advantage of sharing useful
metric structures across different expression categories.

kNN classifier tends to Bayesian optimal as the dataset size
tends to infinity [6]. However, the time cost of searching all
examples for nearest neighbors would become the bottleneck
as more instances are added to the database. To scale up
to larger database, an approximate yet fast classification
technique based on Locality Sensitive Hashing (LSH) [7] is
proposed as a variant of ML-based kNN voting method. This
variant achieves efficiency by narrowing search for candidate
nearest neighbors down to only items sharing the same hash
key in a pre-computed hash table.

The main contributions of this paper are summarized
below:

1) Metric learning is employed to train a domain-specific
distance metric that is able to capture the inherent
embeddings of feature space and yields more accurate
and robust expression classification results;

2) An approximation scheme based on LSH is used to
speed up the nearest neighbor search process of ML-
based kNN, making our method a real-time one and
applicable to enormous database;

3) We also perform comparative experimental studies of
various expression classification algorithms on two
databases. Our ML-based kNN voting method com-
pares favorably in terms of recognition rate, especially
when it comes to subtle expressions.

This paper is structured in the following way. Section II
will introduce the feature representation of facial expression.
We then formulate expression classification as a metric
learning problem. In section IV, how ML-based kNN can
be sped up via the use of LSH is described. Finally, we
present various experimental results and discussions followed
by conclusions.

II. EXPRESSION REPRESENTATION

This section outlines the method for representing facial
expression. We use a fusion of face shape and texture as
the representation of facial expression. This hybrid repre-
sentation is able to incorporate local pixel intensity variation
pattern while still adhering to shape constraint at a global

level, proving to be robust and effective. Necessary prepro-
cessing steps prior to constructing such a representation are
also described.

A. Face Shape

In our work, a face shape is represented by a set of
68 points known as landmarks. To be invariant to scale,
orientation and reference point, Procrutes Analysis is em-
ployed to align these landmarks to the mean shape. Example
alignment results from the CK+ dataset [20] are shown in
Fig. 1. In total, shapes of seven basic expressions (including
neutral) defined in [2] are given in seven subfigures [15].
Each subfigure is a superimposition of face shapes of all
examples of a specific expression from the CK+ dataset [20].
Red landmarks denote the mean shape.

B. Texture Feature

A number of research works on expression recognition
using Gabor features have reported improved recognition rate
[16]–[18]. In our work, Gabor features are used as the texture
descriptor. In this subsection, the procedures for extracting
Gabor features are described.

1) Face Image Normalization: Face appearance can vary
greatly among instances of subjects due to skull sizes,
lighting conditions, image noise, and intrinsic sources of
variability. To minimize geometric and luminance variances,
two normalization techniques are applied to raw images
before the actual extraction of Gabor features. First, the face
image is shifted, scaled and rotated so that the face shape in
this image is aligned with the mean shape. Then from this
affine-transformed image we calculate self-quotient image
to attenuate variation of illumination. This is accomplished
by first convolving the transformed image with a Gaussian
smooth filter and then dividing it by its smoothed version.

2) Gabor Feature Extraction: A family of Gabor kernel
can be expressed as a Gaussian modulated sinusoid in the
spatial domain. Our Gabor filter bank consists of filters at 5
scales and 8 orientations.

Since it has been shown that mouth contributes the most to
a particular expression, followed by canthus and eyebrows,
we crop a total number of 7 patches from the self-quotient
image to serve as expression identification regions, as shown
in Fig. 2. Gabor filter bank is then applied to these 7 patches
respectively, resulting in a Gabor feature vector of dimension
560. To remove redundancy, Principal Component Analysis
(PCA) is employed to reduce data dimension to 80 while
retaining 98% of energy. Denoting the face shape vector and



Fig. 2: Image patches where Gabor features are extracted.

the Gabor feature vector as s and g respectively, a particular
expression could be represented as a concatenation s of g:

x = [sT ,λ ·gT ]T

where λ is a weighting factor balancing the relative impor-
tance of shape and texture. To further reduce data dimension,
PCA is performed on x to derive the final representation of
facial expression. Without causing confusion, we will still
use x to represent facial expression in the later parts of this
paper.

To select proper λ such that s and g are commensurate,
we estimate the effect of varying s on g using a similar
method in [8]. To do this, we displace s from its ground truth
position and the RMS change in g per unit RMS change in
s is recorded. The weighting factor λ is set as the inverse of
the average value of RMS change of all training example.

III. DISTANCE METRIC LEARNING

Many algorithms in pattern recognition rely on some dis-
tance metric for measure of similarity between two objects.
A good metric should supply high similarity for objects of
the same category, and a low one for those of different
categories. Lp norm is a frequently used metric due to its
simplicity. Kernel methods can be seen as an attempt to trans-
form default Euclidean geometry with a non-linear kernel op-
eration to a high dimensional feature space and has achieved
wide applicability in pattern recognition community. Other
methods like Linear Discriminant Analysis seek to project
data to subspace that maximizes inter-class variance while
keeping intra-class variance as small as possible.

For a kNN classifier, the class label is determined by
the consensus of k nearest neighbors. Traditionally, in the
absence of prior knowledge on the statistical regularities in
data, Euclidean distance is used to measure the dissimilarity
between instances. However, as shown by some researchers
[25], [26], kNN performance can be significantly improved
by exploiting the inherent data embeddings and learning a
distance metric accordingly.

Distance metric learning is an emerging method that
allows more flexible transformation of feature space so that
in the derived feature space, similar examples are closer
to each other while dissimilar examples are separated by
a large margin. The learning dynamics of distance metric

(a) Before metric learning (b) After metric learning

Fig. 3: Schematic illustration of data distribution before and
after metric learning. Class label is denoted by the color. The
distance metric is optimized so that similarly labeled data is
tightly clustered and differently labeled data is separated by
a large margin.

learning are illustrated in Fig. 3. Particularly, given a set of
points X = {x1,x2, ...,xn}, where xi denotes the feature vector
of an expression, we seek a matrix A that parameterizes
the (squared) generalized Mahalanobis distance between two
expressions xi and x j:

dA(xi,x j) = (xi− x j)
T A(xi− x j)

In supervised expression classification, the objective is to
learn a new distance matrix A regularized by A0 that satisfies
pairwise constraints imposed by label information:

min
A≥0

Dld(A,A0)

s.t. dA(xi,x j)≤ li, j i f (i, j) ∈ S

dA(xi,x j)≥ ui, j i f (i, j) ∈ D

where A ≥ 0 requires A to be semi-positive definite,
Dld(A,A0) is the LogDet divergence that regularizes A to
be as close to A0 as possible, S is the set of all similar pairs
of training instances, D is the set of all dissimilar pairs of
training instances, and li, j and ui, j are the lower and upper
bound for similar and dissimilar pairs respectively.

In our work, Information-Theoretic Metric Learning
(ITML) from [19] is used to solve the above optimization
problem. A0 is chosen to be the inverse of the covariance
matrix of the training data. For examples from two different
categories, ui, j is set as the 80th percentiles of the sample
histogram of distances between all dissimilar pairs of these
two categories. For examples from the same category, li, j is
set as the 20th percentile of the sample histogram of distances
between similar pairs within category. In total, we use 7
lower bounds and 21 upper bounds for a 7-class expression
classification problem. To classify an unseen example, k
nearest neighbors are first retrieved based on the learned
metric, and weighting is further applied to the votes of these
k nearest neighbors to determine the final wining expression
category.

The algorithmic steps used to perform the ML-based kNN
voting are described as a two-stage process. In the very
first stage, the bootstrapping stage, the model is contructed
and the distance metric is learned. After the training is



finished, our voting method proceeds to stage 2, where the
classification decision is made.

Stage 1 Bootstrapping

Input: The training set of face images with different expres-
sions I = {Ii}, the set of face shapes S = {si} and the
set of expression labels C = {ci}, the weighting factor
λ to balance the relative importance of face shape and
texture.

Output: Distance metric A.
1: Compute mean shape m from S in an iterative manner

until convergence;
2: For each si ∈ S, align si to m using affine transform a f tri,

then transform Ii ∈ I with a f tri. Still denote the resulting
face image set and face shape set as I and S respectively
for convenience;

3: For each Ii ∈ I, extract Gabor features gi;
4: Concatenate si and gi to derive the final representation

of expression xi = [sT
i ,λ ·gT

i ]
T ;

5: According to expression label information C, form the
set of similar pairs S and the set of dissimilar pairs D
and calculate pairwise constraints ui, j and li, j;

6: Optimize the distance metric A with the goal of satis-
fying pairwise constraints imposed by ui, j and li, j using
ITML algorithm.

Stage 2 Classification

Input: Distance metric A, query facial expression x, the
number k of nearest neighbors to extract, weighting
sequence {wi(i = 1,2, ...,k)} controlling the decay of k
votes of the nearest neighbors.

Output: Winning expression label c.
1: For x, calculate its distance to all examples in the dataset

using A;
2: Retrieve the k nearest neighbors, rank them according to

their similarity to x. Denote the corresponding expression
label sequence as {c′i(i = 1,2, ...,k)};

3: Denote the score for each expression label as score j and
initialize each score to 0.0. Apply {wi(i = 1,2, ...,k)} to
the votes of {c′i(i = 1,2, ...,k)} to derive the final score
for each expression using the following routine:

for c
′
i in {c′i(i = 1,2, ...,k)}

scorec′i
= scorec′i

+wi

4: Set c as the one that has the maximum score.

In implementation, k is chosen to be 100 and {wi} is
chosen to be geometric progression with a common ratio
of 0.9. This makes intuitive sense since the vote of a
nearest neighbor with lower ranking should be weighted
progressively less.

IV. SCALED ML-BASED KNN VIA LSH

A kNN classifier would require linear scan of all examples
in the database in order to make a classification, thus being

computational expensive. While our ML-based k-NN classi-
fier working at the scale of 10,000 facial images can reach
a processing speed of 17fps on a Dell desktop with 3.6GHz
Intel Core i7 CPU and 4G memory, this method would
virtually become computationally infeasible as a REAL-
TIME algorithm as new data-rich collections with more
facial images and expression categories are continuously
being introduced. To gear toward future large-scale data set,
Locality Sensitive Hashing (LSH) [7] is adopted to trade off
classification accuracy with computation speed.

The basic idea of LSH is to compute a hash key for
each example x in the database using a family of hashing
functions h(x)∈F so that similar examples will have a higher
probability of collision in the hash table. The hash function
h(x) should satisfy the locality sensitive hashing property:

Prh∈F [h(xi) = h(x j)] = sim(xi,x j)

where sim(xi,x j) is the similarity between xi and x j.
Commonly used similarity function and corresponding

hash function family are inner product similarity and random
hyperplane projection defined as follows:

sim(xi,x j) = 1− 1
π

cos−1(
xT

i x j

‖ xi ‖‖ x j ‖
)

hr(x) =

{
1, if rT x > 0
0, otherwise

where r is a random vector drawn from multivariate normal
distribution with zero mean and identity variance N(0, I). To
estimate similarity between two examples, the hash keys are
formed by concatenating the output of l hash functions drawn
from F , and the hamming distance between these two keys
are calculated.

To account for the effect of the learned metric from
previous section, we have adapted the similarity function and
hash function to have the following form:

sim(xi,x j) = 1− 1
π

cos−1(
xT

i Ax j

‖ xiL ‖‖ x jL ‖
)

hr(x) =

{
1, if rT Lx > 0
0, otherwise

where L is the Cholesky decomposition of A satisfing A =
LLT .

At query time, the vector representing an expression is
hashed directly to a specific position in the hash table and
all examples that are in the same place as the query vector are
returned as similar candidates. The k nearest neighbors are
then selected by a linear search through similar candidates.
The computational cost is incurred the most when taking the
sequence of examples that collided and sorting them by their
similarity to the query. Since the range of search for nearest
neighbors is significantly reduced, LSH makes possible faster
search of high-dimensional feature space.



(a) (b) (c) (d) (e) (f) (g)

Fig. 4: Image sequences from CK+ database showing the formation of sadness from onset to peak.

(a) (b) (c) (d) (e) (f) (g)

Fig. 5: Image sequences from MFP database showing the formation of sadness from onset to peak.

V. EXPERIMENTS AND RESULTS

Our primary goal is to verify that the proposed metric
learning method can indeed learn a metric that adapts to the
feature embeddings of facial expressions, and improve the
hit rate when retrieving nearest neighbors. To this end, we
perform a comparative study of several widely used methods,
including standard kNN, SVM and LDCRF (LDCRF [15] is
reported to give the highest recognition rate for a 7-class
expression recognition problem). Experiments show that our
method outperforms the state-of-the-art. In particular, we em-
pirically derive the average recognition rate of 5 classification
methods on 2 different dataset and contrast the confusion
matrix obtained from LDCRF [15] and our ML-based kNN.
An interesting plot of the first 3 principal components of
facial expressions before and after metric learning further
demonstrates the discriminative power of our method on
subtle expressions. We use LIBSVM [23] for experiment on
SVM and implementation of LDCRF is based on [15].

Fig. 6: Average recognition rate of various methods for
expression classification (including neutral).

A. Overview of Dataset

We evaluate our algorithm on two datasets, the Extended
Cohn-Kanade (CK+) dataset [20] and the Moving Faces and

People (MFP) dataset [21]. The first one, CK+, is one of the
most widely used test-bed for face analysis algorithms and
consists of AU-coded and expression-labeled face images of
single persons, taken under relatively controlled viewpoint
and illumination conditions. Current state-of-the-art expres-
sion recognition systems have saturated in performance on
this dataset, and we include evaluation on it for the purpose
of comparison of our method against other systems. We
also evaluate our algorithm on a more challenging dataset,
the MFP dataset. It contains a variety of still images and
videos of individuals in natural context. Human expressions
exhibited in MFP are all naturally induced by scenes from
movies and television programs rather than posed ones, thus
being subtle and more difficult to recognize. Fig. 4 and Fig.
5 show two image sequences demonstrating the formation of
sadness from onset to peak, with the first from CK+ and the
second from MFP. To the best of our knowledge, no previous
experimental results of expression recognition on MFP are
available, most probably due to the fact that it is a dataset
of spontaneous, hard-to-classify facial expressions.

One difference between CK+ and MFP motivates us to
take different approaches when evaluating the performance of
our method: CK+ carries ground-truth landmarks with itself
but MFP does not. Hence, we implement the following three
approaches of training and testing: 1) Training and testing
on CK+ with ground truth facial landmarks and expression
labels provided by the dataset itself; 2) Training and testing
on MFP with ground truth facial landmarks and expression
labels obtained by manual annotation; 3) Training and testing
on MFP with ground truth facial landmarks and expression
labels obtained from automatic annotation based on [9]. To
maximize the amount of training and testing data, a five-fold
cross-validation configuration is used.

B. Experimental Results

1) CK+: CK+ contains 593 sequences from 123 subjects.
Out of the 593 sequences 309 were labeled as one of the
six basic expressions. Since all the sequences start from the
neutral pose to the peak formation of the expression, to train
a discriminative model, we split each continuous sequence
into two halves: the first half is labeled as neutral, and the



(a) Query Image (b) Dsgt#1 (c) Dsgt#2 (d) Nutr#3 (e) Dsgt#4 (f) Nutr#5 (g) Dsgt#6 (h) Dsgt#7

Fig. 7: Ranked list of nearest neighbors obtained using ML-based kNN along with the groundtruth labels.

(a) Query Image (b) Hpns#1 (c) Hpns#2 (d) Nutr#3 (e) Hpns#4 (f) Nutr#5 (g) Nutr#6 (h) Nutr#7

Fig. 8: Ranked list of nearest neighbors obtained using standard kNN along with the groundtruth labels.

second half is labeled as expressive. As a result, we set up
a 7-class classification experiment for CK+.

Average recognition rate of our method as well as the
state-of-the-art methods is given in Fig. 6. The confusion
matrices of our method and LDCRF are given in Table
1 and Table 2 respectively (LDCRF [15] reports the best
performance among the state of the art, so other methods’
confusion matrices are not given here).

From the comparison between Table 1 and Table 2, it’s
clear that ML-based kNN achieves less confusion between
subtle expressions such as neutrality, anger, fear, etc, which is
exactly the reason why our method outperforms others with
a recognition rate of 89.4%. Of course, LDCRF is a prob-
abilistic method of modeling dynamically varying patterns
whereas our method tries to uncover the interrelationships
between different examples in a static manner. The optimal
way for the classification task at hand is to incorporate metric
learning into the LDCRF model in a unified framework; this
is subject for future research.

TABLE I: Confusion Matrix for 7-Class Expression Classi-
fication Using ML-based KNN on CK+

Ntr Agr Dsg Fer Hpn Sdn Spr
Ntr 96.7 0.7 0.0 0.3 1.0 1.3 0.0
Agr 11.1 84.9 0.0 0.0 0.0 0.0 0.0
Dsg 15.2 0.0 83.1 0.0 1.7 0.0 0.0
Fer 20.0 0.0 0.0 80.0 0.0 0.0 0.0
Hpn 4.3 0.0 0.0 0.0 95.7 0.0 0.0
Sdn 7.2 0.0 0.0 0.0 0.0 92.8 0.0
Spr 5.6 0.0 0.0 0.0 0.0 0.0 94.4

TABLE II: Confusion Matrix for 7-Class Expression Classi-
fication Using LDCRF on CK+

Ntr Agr Dsg Fer Hpn Sdn Spr
Ntr 73.5 6 1.6 1.9 2.6 9.2 5.2
Agr 20.6 76.6 1.1 0.0 1.6 0.0 0.0
Dsg 2.7 6.2 81.5 0.0 9.6 0.0 0.0
Fer 0.0 0.0 0.0 94.4 0.0 4.2 1.4
Hpn 0.5 1.0 0.0 0.0 98.6 0.0 0.0
Sdn 21.5 0.0 0.0 1.3 0.0 77.2 0.0
Spr 0.9 0.0 0.0 0.0 0.0 0.0 99.1

2) MFP: MFP is a database of static images and video
clips of human faces and people. Of more interest to our
investigation are the Dynamic Facial Expressions video clips
that show spontaneous expressions of subjects watching a
10 minute video clip. There are several drawbacks working
directly with these video clips: a) Expressions in each video
vary in length. Some occur over a few frames, others may
last many seconds; b) These expressions are not verified
and subjects may respond to stimulus with a non-intended
expression (e.g. aiming at inducing fear but actually getting
disgust; c) Some clips contain more than one expression (e.g.
a fear expression may be accompanied by a surprise); d)
All these clips come with neither landmarks nor expression
labels.

To suit our needs, the following steps are taken to validate
the dataset: 1) Manually examine each clip and discard those
containing non-intended expressions; 2) For each valid clip,
cut it short so that it contains exactly the formation of an
expression from onset to peak; 3) Manually annotate frames
in each cut-short clip. Table 3 gives detailed statistics about
the validated dataset. Note that anger is excluded from our
experiment and we only perform a 6-class classification on
MFP dataset since we found no valid examples of anger at
all.

TABLE III: Statistics of the MFP Dataset after Validation

Expression Ntr Agr Dsg Fer Hpn Sdn Spr
Number of Examples 374 N/A 96 15 134 30 99

TABLE IV: Confusion Matrix for 6-Class Expression Clas-
sification Using ML-based KNN Trained on Manually An-
notated MFP

Ntr Dsg Fer Hpn Sdn Spr
Ntr 94.6 0.0 0.0 2.1 0.0 0.0
Dsg 40.6 56.2 0.0 3.2 0.0 0.0
Fer 80.0 0.0 20.0 0.0 0.0 0.0
Hpn 3.5 0.0 0.0 96.5 0.0 0.0
Sdn 0.0 0.0 0.0 0.0 100.0 0.0
Spr 15.2 0.0 0.0 0.0 0.0 84.8



(a) Anger (b) Disgust (c) Fear (d) Hapiness (e) Sadness (f) Surprise

Fig. 9: Plot of the first 3 principal components of different expression vectors BEFORE applying ML-based transformation.
Blue denotes the expression of interest. Red denotes all expressions of non-interest.

(a) Anger (b) Disgust (c) Fear (d) Hapiness (e) Sadness (f) Surprise

Fig. 10: Plot of the first 3 principal components of different expression vectors AFTER applying ML-based transformation.
Blue denotes the expression of interest. Red denotes all expressions of non-interest.

TABLE V: Confusion Matrix for 6-Class Expression Classi-
fication Using LDCRF Trained on Manually Annotated MFP

Ntr Dsg Fer Hpn Sdn Spr
Ntr 68.6 1.3 13.4 3.1 4.1 9.5
Dsg 8.4 81.9 1.2 0.0 7.7 0.8
Fer 56.0 0.0 27.5 10.1 6.4 0.0
Hpn 0.9 1.0 0.0 98.1 0.0 0.0
Sdn 25.7 17.3 9.7 6.8 40.5 0.0
Spr 15.2 27.7 12.9 4.8 6.8 32.6

With a validated MFP dataset, we first test the 5 expression
recognition methods with the manually annotated landmarks,
i.e. training and testing using approach 2. Furthermore, we
also test the 5 expression recognition methods in a real-time
setting using the auto face image annotator from [9], i.e.
training and testing using approach 3. The average recogni-
tion rates of these 5 methods are given in Fig. 6. Confusion
matrices for ML-based kNN and LDCRF obtained using
approach 2 are given in Table 4 and Table 5 respectively
(Confusion matrices obtained using approach 3 are not given
here).

Since MFP is a database of spontaneous expressions rather
than acted ones, one should not be surprised that recognition
rates on MFP decline a lot compared to those on CK+.
However, ML-based kNN still gives much better result than
other methods when tested on MFP. By careful examination
of Table 4 and Table 5, it is again evidenced that our method
is conducive to high classification accuracy by being the most
successful in removing indiscrimination between dissimilar
examples while reinforcing alikeness between similar exam-
ples.

We could also see in Fig. 6 that approach 3 yields the
lowest recognition accuracy among the three training/testing
approaches. This is in part due to the subtlety of expression
and in part due to the not-so-good CLM-based auto face
registration. For this very reason, we call for improvement
on current face registration and alignment techniques.

What is noteworthy is that the recognition rate of LSH
approximation of ML-based kNN voting is consistently
better than all but ML-based kNN. In our experiment, the
bit length of hash key is selected to be 100, for which a
frame rate of around 25 fps could be attained. In fact, the
length of hash key controls the tradeoff between accuracy
and speed. We could further improve the accuracy of LSH
approximation by using longer hash key, at the expense of
higher computational complexity and lower frame rate. If
one chooses to distribute the matching process across several
machines, computational complexity should not be an issue.
It should be noted that we do not observe any significant
performance improvement beyond bit length of 130, where
the program runs at a frame rate of 20 fps. The superior
performance of the LSH approximation scheme demonstrates
scalability of our ML-based kNN voting method and qualifies
itself as applicable to real world problems.

3) Visualization of feature embedding transformation: To
exemplify the retrieval performance of ML-based kNN, we
show in Fig. 7 and Fig. 8 the nearest neighbors retrieved
by ML-based kNN and standard kNN respectively given
the same query image. As can be seen, ML-based kNN
gives quite satisfactory results whereas disgust is completely
confused with happiness and neutrality by standard kNN.
To visualize the transformation effect of metric learning on
feature space, we further show a comparative plot of the
first 3 principal components of facial expressions in CK+
before and after applying ML-based transformation in Fig. 9
and Fig. 10 respectively. Much overlap could be observed in
Fig. 9 between dissimilar expressions. The overlap is even
exacerbated for subtle expressions such as anger, disgust,
fear and sadness. In contrast, Fig. 10, which gives PCA
plot of expressions after ML-based transformation, shows
a much better separated point distribution for differently
labeled expressions, consequently facilitating higher recog-
nition accuracy.



VI. CONCLUSIONS

We present a new expression classification method us-
ing Metric Learning-based k-Nearest Neighbor voting. The
metric is optimized with the goal that all similarly labeled
inputs have small pairwise distances, while all differently
labeled inputs have large pairwise distances. This method
alleviates confusion between subtle expressions such as
neutral, angry and fear, etc., thus outperforming the state-of-
the-art methods. To speed up our method, an approximate yet
efficient variant scheme of ML-based kNN voting is further
devised based on Locality Sensitive Hashing. LSH allows
fast indexing of similar examples with the help of a pre-
computed hash table and significantly accelerates the nearest
neighbor matching process.

Experiments show that ML-based kNN demonstrates bet-
ter classification especially when it comes to subtle expres-
sions. Also, our LSH approximation scheme gives superior
classification performance than the state-of-the-art, and more
importantly, works at a faster speed, demonstrating the
scalability and capability of our method.
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