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Abstract—In this paper, we propose a RGB-D indoor scene
recognition method that has mainly two advantages as compared
to existing methods. First, by training object detectors using
RGB-D images and recognizing their spatial interrelationships,
we not only achieve better object localization accuracy than using
RGB images alone, but also obtain details as to how the objects
are related to each other in a spatial manner, thus resulting in
a more effective high-level feature representation of the scene
known as the Objects and Attributes (O&A) representation.
Second, we learn class-specific sub-dictionaries that capture the
high-order couplings between the objects and attributes. In
particular, elastic net regularization and geometric similarity
constraint is imposed to increase the discriminative power of
the sub-dictionaries. The proposed method is evaluated on two
RGB-D datasets, the NYUD dataset and the B3DO dataset.
Experiments show that superior scene recognition rate can be
obtained using our method.

I. INTRODUCTION

Scene understanding is an active research topic in computer
vision. In the past decade, scene understanding has mainly
dealt with 2D RGB images. The Bag-of-Visual-Words (BoW)
model, which extracts local features from interest points and
aggregates the statistical properties of the appearance of the
scene in a histogram, has achieved significant success ([1],
[2], [3], [4]). Although promising results were shown from
using these low-level representations, it is unclear why such
a histogram representation should be optimal for the scene
recognition problem. More recent research suggests that high-
level representations, which explore the semantically meaning-
ful components of a scene, such as objects and salient regions,
are more effective for scene recognition ([5], [6], [7], [8]).

In this paper, we propose a new method for indoor scene
recognition from RGB-D images. We use a high-level image
representation, called Objects and Attributes (O&A), that is
built upon a set of object detectors and attribute classifiers 1.
Starting from publicly available RGB-D image sets annotated
with object-level bounding boxes, we train object detectors
using both the RGB and the depth information. RGB-D
based object detection has been shown to produce superior
localization results than that of using RGB image alone [10].
Then, to characterize the spatial layout of indoor scenes, we
define a number of attributes to describe how the objects are

1The term scene attributes has been used with different meanings. In [9],
scene attributes refer to scene properties that are related to materials, surface
properties, lighting, etc. In this paper, scene attributes are used to describe the
spatial relation between objects.
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Fig. 1: We use Objects and Attributes (O&A) to represent a
scene. Given a training set of images represented by the O&A,
we then learn a set of class-specific sub-dictionaries, each of
which encodes the coupling between highly correlated objects
and attributes of each scene class. For a new scene image,
its O&A representation can thus be reconstructed as a sparse
weighted sum of the scene bases in these sub-dictionaries.
In this figure, the left part indicates the detected objects and
attributes. The height of the blue bars indicate the importance
of the coupling of the corresponding object pair and attribute
in the scene basis.

related to each other in a spatial manner. The objects and
attributes complement each other in describing indoor scenes.
A possible description of the office scene in Figure 1 using
the Objects and Attributes representation is the following: The
monitor is above the desk. The water bottle is above the desk.
The desk is to the left of the chair and close to it.

Equipped with the Objects and Attributes representation of
a scene, the task of scene recognition is solved by learning
a dictionary of scene bases. Instead of learning one over-
complete dictionary for all classes, we learn class-specific
sub-dictionaries to increase the discrimination. In contrast to
existing class-specific dictionary learning methods that are
based on l1-norm sparsity constraint, we impose the elastic net



regularizer to ensure that feature vectors are well reconstructed
by scene bases from the same class. Moreover, the geometric
similarity between the features are incorporated during the
process of dictionary learning, so that features with high
similarity will tend to have similar coefficients.

Figure 1 illustrates our approach. We capture the coupling
between the objects and attributes by learning a set of class-
specific sub-dictionaries. Given a new indoor scene image
represented as a vector of detected objects and attributes, we
reconstruct it as a sparse weighted sum of the scene bases of
these sub-dictionaries. Since we use the learned scene bases
to reconstruct the scene, our method is expected to correct
false detections of objects and attributes. For example, in the
learned scene bases, the ”beside” attribute is more likely to be
the relationship between a ”table” and a ”chair”, than between
a ”computer” and a ”chair”.

The rest of this paper is organized as follows. Related
work are described in Sec.2. The Objects and Attributes based
representation of indoor scenes and the class-specific dictio-
nary learning are elaborated in Sec.3 and Sec.4 respectively.
Experimental results are given in Sec.5.

II. RELATED WORK

Numerous efforts have been devoted to the area of scene
recognition. The Bag-of-visual-words model (BoW) [1], [3],
[4], which represents an image as an orderless collection of
local features (e.g. SIFT [11]), has demonstrated impressive
scene recognition performance because they can be reliably
detected and matched across objects or scenes under different
viewpoints or lighting conditions. [12], [13], [14] take into
account the collocation patterns of visual words and learn
”visual phrases” for high-level scene/object recognition. [15]
incorporates the spatial information of local features into the
BoW representation of images for better scene recognition per-
formance. Topic models, which take a three-layer hierarchical
Bayesian view of the generation of image, recognize scene
classes by incorporating a semantic layer of latent topics in
between the scene classes and visual words [16], [17], [18],
[19].

In contrast to the above-mentioned methods which recog-
nize scene classes using low-level features, Li et al. [5] propose
a model called the Object Bank (OB), which represents an
image as the response map of a large number of pre-trained
generic object detectors. Zheng et al. [7] propose an object
part model, named Hybrid Parts, for scene recognition based
on the detection of fine-grained local object parts. Pandey et
al. [6] optimally select the Region of Interest (ROI) to be those
containing salient objects, and classify a novel scene based on
the fact that similar scenes contain similar ROIs.

Motivated by the recent work of modeling the spatial
relations between objects using language constructs such as
”prepositions” for the task of object annotation [20], we
propose an object-level image representation for the task of
scene recognition which models the relations between objects
via a set of attributes (e.g. above, below). Furthermore, we
learn a set of class-specific sub-dictionaries and use these
sub-dictionaries to robustly reconstruct each scene. Both the
elastic net regularization and geometric similarity constraint

is incorporated to improve the discriminative power of sub-
dictionaries. Extensive experiments on two existing RGB-D
datasets demonstrate the effectiveness of our method on indoor
scene recognition tasks.

III. OBJECTS AND ATTRIBUTES

Each image in the training set is represented by the objects
and attributes detected in the image. We now describe how to
train classifiers to automatically recognize these objects and
attributes.

A. Object Detection

To detect objects within RGB-D images, we follow the
implementation of [21]. In particular, we use a concatenation
of the HOG features extracted from both the RGB and the
depth channel as input to the SVM classifier.

The linear SVM classifier scans across the RGB-D image
at all positions and scales. In total, we use a pyramid of 20
image scales to capture the visual and depth features ranging
from coarse to fine. The score function of the linear SVM
classifier for object category o ∈ {1, · · · , O} can be written
as

fo(r, p) = wT
o g(r, p) + bo (1)

where r and p denotes the scale and position of the image
respectively, g denotes the features extracted from (r, p), and
wo and bo is the weight vector and bias respectively. The score
map so(p) is the maximum linear SVM classifier score at all
scales, i.e. so(p) = max

r
fo(r, p).

We fit a sigmoid function to so(p) to compute a probabilis-
tic map ho(p) which can be seen as the detector confidence
of an instance of object class o at position p

ho(p) =
1

1 + exp{a · so(p) + b}
(2)

where a and b are constants that are learned from the training
data using maximum likelihood estimation. Detections in the
probabilistic map that are less than a specific threshold are
discarded. We further remove overlapping detections via non-
maximum suppression. The remaining detections are accepted
as valid detections. See Figure 2 for example object detection
results in different indoor scenes.

B. Attribute Classification

Inspired by theory of spatial relation comprehension de-
veloped by Logan et al. [22], we use ten predefined attributes
to describe the spatial relations between a pair of objects in
a scene: in front of, behind, right of, left of, above, below,
contain, contained by, close to, far from. Note that these
attributes can be easily expanded to account for more complex
spatial relations such as surround, hang from, protrude from,
etc.

Following [23], we develop ten spatial templates to map
the geometric information estimated from the RGB-D data
to a confidence score indicating the likelihood of a pair of
objects having a particular attribute. Specifically, the ten spatial
templates are applied sequentially to the pair of objects and the



confidence object 1 attribute object 2 
0.63 faucet above toilet 
0.63 toilet under faucet 
0.51 toilet behind toilet 
0.51 toilet in front of toilet 
0.46 toilet under water bottle 
0.46 water bottle above toilet 
… … … … 

(a) Bathroom

confidence object 1 attribute object 2 
0.92 chair left of table 
0.92 table right of chair 
0.90 chair right of table 
0.90 table left of chair 
0.86 water bottle above table 
0.86 table under water bottle 
… … … … 

(b) Dining room

confidence object 1 attribute object 2 
0.87 glass cup left of plate 
0.87 plate right of glass cup 
0.91 bowl behind plate 
0.91 plate  in front of bowl 
0.83 bowl left of fork 
0.83 fork right of bowl 
… … … … 

(c) Kitchen

confidence object 1 attribute object 2 
0.94 monitor above keyboard 
0.94 keyboard below monitor 
0.81 water bottle left of keyboard 
0.81 keyboard right of bottle 
0.64 cup left of  water bottle 

0.64 water bottle right of cup 
… … … … 

(d) Office

Fig. 2: The objects and attributes detected in different scenes. The first row shows the depth images of each scene, and the red
bounding boxes in the RGB images in the second row shows the detected objects. The third row shows the O&A representation
of each scene output by our object and attribute classifier. The object and attribute classifiers are not perfect, as demonstrated
by some false detections.

attribute with the highest confidence score is kept. A spatial
template is defined as a fuzzy membership function that returns
a value indicating the applicability of an attribute for a pair of
objects, behaving rather like a receptive field.

C. Objects and Attributes Representation

With the detected objects and attributes, each image is
represented by a feature vector y ∈ RM , where M is the
number of all possible object and attribute interactions, and
each dimension is the probability of a pair of objects having
a particular attribute, which is the product of the detector
confidence of the two objects and their attribute. The third row
of Figure 2 shows example O&A representations for indoor
scenes from the B3DO dataset [24].

IV. LEARNING DISCRIMINATIVE SCENE BASES

A. Background of Dictionary Learning

Given a training set Y = [y1, · · · , yN ] ∈ RM×N , dictio-
nary learning [25] aims to learn a dictionary of bases that best
reconstruct the training examples:

min
D,X

N∑
i=1

‖yi − Dxi‖22 + λ‖xi‖1 (3)

where D = [d1, · · · ,dK ] ∈ RM×K is the dictionary with
K bases, xi ∈ RK are the reconstruction coefficients for
yi. Different from the K-means clustering that assigns each

training example to the nearest cluster center, Eq. 3 learns
an overcomplete dictionary D and represents each training
example as a sparse linear combination of the bases in the
dictionary.

To learn a dictionary that is well-suited for supervised
classification tasks, class-specific dictionary learning methods
have been proposed that learn a sub-dictionary for each class
[26], which is formulated as

min
D,X

C∑
c=1

‖Yc − DcXc‖22 + λ‖Xc‖1 (4)

where Yc = [yc1, · · · , yc
Nc

], Xc = [xc1, · · · , xcNc
], and Dc =

[dc
1, · · · ,dc

Kc
] are the training set, reconstruction coefficients,

and sub-dictionary for class c, respectively.

As pointed out in [27], the sub-dictionaries learned above
typically share common (correlated) bases, thus D may
not be sufficiently discriminative for classification tasks and
the sparse representation will be sensitive to the variations
in features. Even though an incoherence promoting term∑

i 6=j ‖D
T
i Dj‖22 can be included in the dictionary learning

objective function, correlated bases still exist [26].

B. Our method

Our method learns high-order couplings between the ob-
jects and attributes of a scene in the form of a set of class-
specific sub-dictionaries under the elastic net regularization



and geometric similarity constraint, which is formulated as

min
D,X

C∑
c=1

[
‖Yc − D∈cXc‖22 + ‖D6∈cXc‖22+

λ1‖Xc‖1 + λ2‖Xc‖22
]
+

λ3

L∑
l=1

N∑
i=1

‖αl − xi‖22wli (5a)

s.t. ‖dk‖22 = 1,∀ k = 1, · · · ,K (5b)

where D∈c = [0, · · · ,Dc, · · · , 0] and D6∈c = D−D∈c, ‖Yc−
D∈cXc‖22 minimizes the reconstruction residual of the training
examples of class c using the cth sub-dictionary, ‖D6∈cXc‖22
penalizes the reconstruction of the training examples using
sub-dictionaries from different classes, λ1‖Xc‖1+λ2‖Xc‖22 is
the elastic net regularizer, and λ3

∑L
l=1

∑N
i=1 ‖αl − xi‖22wli

is the geometric similarity constraint.

The elastic net regularizer is a weighted sum of the l1-norm
and the square of the l2-norm of the reconstruction coefficients.
Compared to a pure l1-norm regularizer, the elastic net regu-
larizer allows the selection of groups of correlated features
even if the group is not known in advance. Besides enforcing
grouped selection, elastic net regularizer is also crucial to the
stability of the sparse reconstruction coefficients with respect
to the input examples [28].

In the geometric similarity constraint, αl are the recon-
struction coefficients for the ”template” tl. Here, the templates
are the cluster centers obtained by running K-means clustering
on the training examples of each class. L is the total number
of templates from all classes. In particular, the coefficients αl

belonging to class c can be calculated as follows

βl = min
βl

‖tl − Dcβl‖22 + λ1‖βl‖1 + λ2‖βl‖22 (6a)

αl = [ 0︸︷︷︸
K1

, · · · , 0︸︷︷︸
Kc−1

,βl, 0︸︷︷︸
Kc+1

, · · · , 0︸︷︷︸
KC

] (6b)

In αl, only the coefficients corresponding to the bases from the
same class c are non-zero. The weight wli is defined to be the
Gaussian similarity between the template tl and the training
example yi

wli = exp(−‖tl − yi‖22/2σ2) (7)

The geometric similarity constraint defined in this way en-
courages two similar input examples to also have similar
reconstruction coefficients.

We use a similar iterative algorithm in [29] to solve for
the optimal dictionary D and the reconstruction coefficients X
in Eq. 5, which iteratively optimizes over D or X while fixing
the other.

C. Classification

After learning the discriminative dictionary D, the recon-
struction coefficients for an input example y can be calculated
by solving the following optimization problem:

min
x
‖y− Dx‖22 + λ1‖x‖1 + λ2‖x‖22 + λ3

L∑
l=1

‖αl − x‖22wl

(8)

scene category number of
examples scene category number of

examples
bathroom 121 kitchen 225
bedroom 383 living room 221
bookstore 36 office 128
classroom 49 playroom 31

dining room 117 study 25
furniture store 27

TABLE I: The statistics of the scene categories in NYUD
dataset after validation.

scene category number of
examples scene category number of

examples
bath room 43 kitchen 28
bedroom 15 living room 63

dining room 24 office 130

TABLE II: The statistics of the scene categories in B3DO
dataset after validation.

After obtaining the reconstruction coefficients for a novel
image, a linear SVM classifier is used to obtain the scene
category.

V. EXPERIMENTS

A. Experiment settings

The proposed method is evaluated on two indoor scene
RGB-D datasets, the NYUD dataset [30] and the B3DO dataset
[24].

• NYUD is a dataset of 1449 RGB-D images, covering
27 diverse indoor scenes taken from 3 cities. A dense
per-pixel object annotation is available, which features
35,064 distinct objects, spanning 894 different classes.
In our experiment, we discard any scene category that
has less than 20 images, and merge ”home office”
into ”office” as we find that these two scenes are very
much the same. This gives us a dataset the statistics
of which are summarized in Table I.

• B3DO is a dataset of 849 RGB-D images taken in
domestic and office settings. Object-level annotation
is provided in the form of bounding boxes on the RGB
image. Since no scene class labels are available, we
manually classify the RGB-D images into one of six
scene classes, including bathroom, bedroom, kitchen,
dining room, living room, office. During this process,
we discard those images that do not belong to any
of the six scene classes, resulting in a scene dataset
summarized in Table II.

For both datasets, we split the images in each scene class
by a factor of 0.5, and use the first half for training and the
rest for testing. All experiments are repeated ten times with
random split of each scene class. The final performance metric
is reported as the mean of the results from the individual runs.

In our implementation, the parameters are set as follows:
(i) the l1-norm weight λ1 = 0.34; (ii) the l2-norm weight λ2 =



Fig. 3: The confusion matrix of the O&A-DL on the NYUD
dataset.

0.17; (iii) the geometric similarity weight λ3 = 1.03; (iv) the
similarity kernel width σ = 1.17. (Preliminary experimental
results show that satisfactory performance is achieved when
λ1 ∈ [0.3 ∼ 0.4], λ2 ∈ [0.1 ∼ 0.2], λ3 ∈ [1.0 ∼ 1.1], and σ ∈
[1.0 ∼ 2.0].) The number of bases for each sub-dictionary is
set to 15. For the geometric similarity constraint, the number of
templates for each class is set to be 1/10 of the total number of
training examples in that class. Compared to the total number
of training examples, the number of templates is relatively
small.

B. Comparison with the State-of-the-art Methods

In this experiment, we investigate the effectiveness of the
proposed method (denoted as O&A-DL) for indoor scene
recognition from RGB-D images. Specifically, we compare
O&A-DL to the Object Bank Model (OBM) [5] and the
Deformable Part based Model (DPM) [6]. In addition, we
also include the recognition performance from directly using
the O&A representation without using their reconstruction
coefficients (denoted as O&A).

As noted in previous work [5], scene recognition based
on high-level representations generally outperforms low-level
representation based scene recognition ([1], [2], [4], [15]).
Therefore, we do not include comparison results with low-
level scene recognition methods.

For all four methods, we train one-vs-all linear SVM
classifiers to recognize the scene category, i.e. a classifier is
learned to separate each class from the rest, and a test image
is assigned the label of the classifier with the highest response.

Figure 3 and Figure 4 show the confusion matrix obtained
using the O&A-DL on the NYUD dataset and the B3DO
dataset, respectively. Figure 5 and Figure 6 show the per-class
recognition accuracy of the four compared methods on the
NYUD dataset and the B3DO dataset, respectively.

As can be seen, O&A-DL is significantly better than OBM
and DPM. This is due to our explicitly modeling spatial lay-
out relations between individual objects using the predefined

Fig. 4: The confusion matrix of the O&A-DL on the B3DO
dataset.
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Fig. 5: Comparison of the O&A-DL to the state-of-the-art
methods on the NYUD dataset.
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Fig. 6: Comparison of the O&A-DL to the state-of-the-art
methods on the B3DO dataset.
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Fig. 7: Comparison of the O&A-DL to other dictionary learn-
ing based recognition methods on the NYUD dataset.
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Fig. 8: Comparison of the O&A-DL to other dictionary learn-
ing based recognition methods on the B3DO dataset.

attributes. It is also clear from Figure 5 and Figure 6 that
O&A-DL consistently outperforms O&A, which is simply a
vector of the confidence score of object detectors and attribute
classifiers. This demonstrates that scene recognition benefits
from learning discriminative scene bases and classifying novel
scene images using the sparse reconstruction coefficients.

C. Comparison with Other Dictionary Learning Methods

In this section, we evaluate the O&A-DL against other dic-
tionary learning based scene recognition methods, including K-
SVD [31] and dictionary learning with structured incoherence
(SI-DL) [27]. For all these three methods, the linear SVM
classifier with the sparse reconstruction coefficients as input is
used for classification.

Figure 7 and Figure 8 show the per-class average recogni-
tion accuracy on the NYUD and B3DO dataset, respectively.
As can be seen, O&A-DL outperforms the other two meth-
ods on these two datasets. Also, the class-specific dictionary
learning method, SI-DL, performs better than K-SVD, which
demonstrates the discriminative power of class-specific dictio-
naries.

VI. CONCLUSION

This paper presents a new method for indoor scene recog-
nition from RGB-D images. In order to better represent a
scene, we train a set of object detectors and attribute classifiers
from RGB-D images, which not only describes the constituent
objects of a scene but also captures their spatial interre-
lationships. Moreover, to discover the high-order couplings
between the objects and attributes, we develop a class-specific
sub-dictionary learning method under the elastic net regu-
larization and geometric similarity constraint. Experimental
results demonstrate that the proposed scene recognition method
achieves better accuracy than the state of the art. We note that
the application of the proposed dictinary learning method is not
limited to scene recognition. Our future work would consist
of futher evaluation of the proposed method on recognition
problems such as face recognition and activity recognition.
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