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a b s t r a c t

Spontaneous facial expression recognition is significantly more challenging than recognizing posed ones.
We focus on two issues that are still under-addressed in this area. First, due to the inherent subtlety, the
geometric and appearance features of spontaneous expressions tend to overlap with each other, making
it hard for classifiers to find effective separation boundaries. Second, the training set usually contains
dubious class labels which can hurt the recognition performance if no countermeasure is taken. In this
paper, we propose a spontaneous expression recognition method based on robust metric learning with
the aim of alleviating these two problems. In particular, to increase the discrimination of different facial
expressions, we learn a new metric space in which spatially close data points have a higher probability of
being in the same class. In addition, instead of using the noisy labels directly for metric learning,
we define sensitivity and specificity to characterize the annotation reliability of each annotator. Then
the distance metric and annotators' reliability is jointly estimated by maximizing the likelihood of the
observed class labels. With the introduction of latent variables representing the true class labels, the
distance metric and annotators' reliability can be iteratively solved under the Expectation Maximization
framework. Comparative experiments show that our method achieves better recognition accuracy on
spontaneous expression recognition, and the learned metric can be reliably transferred to recognize
posed expressions.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Human emotion recognition has long been an actively researched
topic in Human Computer Interaction (HCI). Unlike other types of non-
verbal communication, the human face is expressive and closely tied
to an emotional state. The ability to interpret facial gestures is a key to
a wide range of HCI applications. Researchers have achieved tremen-
dous success in recognizing prototypical and posed facial expressions
that are collected under tightly controlled conditions [1–3]. Since the
most useful current and future face related applications lie in a more
natural context, it is our goal in this paper to develop a system that can
operate on spontaneous expressions characterizing the natural inter-
action between humans and computers.

Quite a few studies have been done on spontaneous facial
expression recognition [4–6], but with only limited progress. There
are several factors affecting the recognition accuracy of spontaneous
expressions, including facial feature representation, classifier design,

useful contextual cues, etc. This paper focuses on two issues that are
still under-addressed in this field.

First of all, spontaneous facial expressions tend to have over-
lapping geometric and appearance features, making it difficult to
find effective classification boundaries [6]. The second issue, most
often ignored, has to do with noisy labeling. Traditional supervised
classification methods assume perfect data labels. However, in the
case of spontaneous facial expression recognition, which involves
only slight facial muscle actions, the class labels can be erro-
neously assigned due to the subjectivity or varied expertise of the
annotators [7]. Classifiers trained on such data inevitably have
their performance negatively affected.

In this paper, we present an automatic recognition system for
spontaneous facial expressions. In particular, we make the follow-
ing contributions.

First, we formulate spontaneous facial expression recognition
as a maximum likelihood based metric learning problem. Under
the learned distance metric, spatially close (distant) data points
have a higher probability of being in the same class, thus facilitat-
ing the kNN based classification.

Second, we address the problem of noisy labeling via multi-
annotation and reliability estimation. In particular, to increase
robustness to noisy labels, for each data point, multiple labels from
different annotators are collected. The sensitivity and specificity
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of each annotator, which indicates the annotation reliability, and the
distance metric is jointly estimated under the Expectation Maximi-
zation (EM) framework via an efficient online learning algorithm.

Third, we extensively compare our method with other methods.
Experiments show that our method not only performs significantly
better in recognizing spontaneous expressions, but also generalizes
well to posed expressions.

The rest of this paper is structured as follows. In Section 2, a
brief review of related work is given. In Section 3, the problem
setting is described. Section 4 describes the feature representation
of a facial expression. We formulate the problem of Robust Metric
Learning based expression recognition and give an efficient solu-
tion in Section 5. Experimental results are given in Section 6.

2. Related work

Facial expression recognition methods are usually concerned
with 7 basic expressions (including neutral) as defined in [8], and
may be broadly classified as static or dynamic. Static approaches
classify an expression in a single static image without considering
the contextual information implied by adjacent images of a
sequence. Representative methods are Naive Bayesian [9], SVM
[1], Adaboost [10], etc. In contrast, a dynamic approach, e.g. HHM
[11], CRF [12], exploits the dependency between adjacent images
of a sequence to boost the recognition accuracy. Most of these
studies have focused on posed expression recognition. For a
comprehensive survey, we refer readers to [13].

Recently, there has been a shift of research interest from posed to
spontaneous expressions. Valstar et al. [4] show that the temporal
modeling of brow actions is important for recognizing spontaneous
expressions. In Cohn and Schmidt's work [5], the amplitude and
timing of facial movement are shown to be important in recognizing
spontaneous smiles. Park et al. [14] magnify subtle expressions using
face-region-specific weight factors to obtain new feature representa-
tion. Note that these methods only deal with spontaneous expres-
sions on a small scale (a limited number of examples and expression
classes), and none of them explicitly model the inter-class over-
lapping and noisy labeling. Ref. [6] is similar to this work by
employing a learned metric for nearest-neighbor expression retrie-
val, but it fails to accommodate noisy labels in the training data. For a
comprehensive review of spontaneous facial expression recognition,
we refer readers to [15].

The facial features used in most previous work are either
geometric features such as the shape of the facial components
(eyes, mouth, etc.) [12,16,17] or appearance features representing
facial texture (wrinkles, bulges, furrows, etc.) [18–20]. As suggested
in several studies, e.g. [21], combining both geometric and appear-
ance features is a better choice in representing facial expressions.

However, due to the subtlety of spontaneous expressions, the
geometric and appearance features of different classes tend to
overlap with each other [6]. Our work is based on the idea that
spontaneous expressions can be better recognized in a learned
feature space where spatially close (distant) data points have a
higher probability of being in the same (different) class.

In particular, let the distance metric of the learned feature
space be denoted byM. The distance between a pair of expressions
ðx1; x2Þ, which is parameterized by M, can be written as

dMðx1; x2Þ ¼ ðx1�x2ÞTMðx1�x2Þ ð1Þ
From the perspective of metric learning, M should be such that

expressions within the same class are closer to each other;
otherwise they are separated by a large margin. Various methods
have been proposed to learn the metric, with different objective
functions designed for specific tasks (clustering [22], classification
[23–25]).

Compared to the previous metric learning methods, ours has a
direct probabilistic interpretation that the likelihood of two
expressions being in the same class is modeled as a sigmoid
function of their distance in the learned feature space. The
resulting optimization is solved as a maximum likelihood estima-
tion problem under the Expectation Maximization framework.
Guillaumin et al. [26] use a similar maximum likelihood metric
learning formulation for face recognition. However, they do not
enforce the metric to be positive semidefinite. Hence, the learned
feature space may be such that the distance between data points
does not satisfy symmetry and triangle inequality.

As mentioned in previous section, the labels of the spontaneous
facial expressions used for training can be quite noisy. There have
been several notable works addressing the issue of learning from
samples with noisy labeling. Opper et al. [27] propose to weaken
the confidence of the observed class labels via a scaling factor. This
method is easy to implement but has only limited accuracy
without considering the underlying label flipping process. Xue
et al. [28] model the label noise as a function of time, which has a
low noise level at the beginning and end stage and a high noise
level in the middle. However, this function does not distinguish
between the label flipping from positive to negative and negative
to positive. Huang et al. [29], in an attempt to learn a noisy-label-
robust distance metric, statistically produce all potentially true
class labels from the observed labels using a preset label uncer-
tainty parameter, giving rise to a combinatorial optimization
problem which is difficult to solve. Our method is different from
previous methods in that: (1) each data point has multiple labels
from different annotators; (2) each annotator, due to subjectivity
and varied expertise, tends to vary in labeling accuracy; (3) we
treat the true label of each data point as latent variables. Our
method is structurally similar to [30] in that the label annotation
task is crowdsourced to a number of different annotators. How-
ever, [30] relates each data point to the label likelihood via a set of
logistic regression weights, whereas we relate each data point to
the label likelihood via a distance metric matrix.

3. Problem setting and overview of our system

In this paper, we focus on the recognition of subtle facial
expressions that are spontaneously produced. To this end, the
Moving Faces and People (MFP) dataset [32] is used in our work.
Here we briefly introduce MFP and describe how we adapt this
dataset to suit our needs.

MFP is a large-scale database of static images and video clips of
human faces and people. The major difference between this
dataset and popular posed expression datasets (e.g. CKþ [31],
MMI [33], JAFFE [34]) is that it is collected in a non-intrusive
manner in order to facilitate image/video understanding in the
natural environment. Part of the whole dataset, the Dynamic Facial
Expressions recordings, contains spontaneous expressions of sub-
jects that are induced by a 10-min video with scenes from various
movies and television programs. MFP has 10 different expression
categories. In this work, only the 7 basic facial expressions
(including neutral) as defined in [8] are considered. Fig. 1 shows
the comparison between posed and spontaneous disgust, taken
from CKþ and MFP respectively.

We wish to note several characteristics of the spontaneous facial
expressions in MFP. First, subjects do not necessarily respond with the
intended facial expression. For example, a subject may show surprise
instead of disgust when watching a disgust-inducing video. Second,
expressions vary significantly in length. Some occur over a few frames,
others last many seconds. Third, some expressions mix with each
other, e.g. faces may change back and forth between fear and disgust.
Finally, these recordings are only marked by the expression inducing
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video type. Neither landmarks nor expression labels for the frames
of these recordings are available.

To suit our needs, we validate this dataset by first extracting
individual frames from the recordings. Then, the per-frame
expression labeling tasks are assigned to annotators. Specifically,
13 annotators who are familiar with facial expression analysis as
well as the experiment's design and purpose are involved in the
task. As a final step, each face image is registered with 68
landmark points to represent the facial shape.

Apart from the noisy labels obtained from the multiple anno-
tators, a single gold standard label is assigned to each expression
based on majority voting, that is, the one with more than half of

the votes from the 13 annotators. In case no majority consent is
reached, votes from “experts” are solicited, and the gold standard
label is determined as the one with the most votes (the vote from
an “expert” is weighted twice more than that of an average
annotator). The gold standard labels will be used for evaluating
the performance of the classifiers.

The statistics of the validated dataset is summarized in Table 1.
The number of examples under each category is based on the gold
standard labels. The mislabel ratio is the ratio between the
number of mislabels and the number of examples of that category.
As indicated, some expressions, e.g. fear and disgust, tend to admit
a high mislabel ratio due to the insufficient agreement among

Fig. 1. A comparison between posed and spontaneous expressions. (a) Posed disgust, CKþ [31]. (b) Spontaneous disgust, MFP [32].

Table 1
Statistics of the validated MFP dataset. The number of examples under each category is obtained from the gold standard labels. The mislabel ratio for each category is
calculated as the ratio of the number of erroneously assigned labels to the total number of labels.

Expression Neutral Anger Disgust Fear Happiness Sadness Surprise

Number of examples 374 79 132 65 164 89 108
Mislabel ratio 0.0 0.28 0.08 0.18 0.0 0.04 0.0

Fig. 2. Flowchart of the facial expression recognition system (best viewed in color). (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)
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annotators, while some other expressions, e.g. happiness and
surprise, achieve unanimity among annotators. We will see later
in the experiment that our method outperforms the state-of-the-
art by making much fewer mistakes in recognizing these easy-to-
mislabel expressions.

Our spontaneous facial expression recognition system (Fig. 2)
consists of two processing lines: bootstrapping and deploying. In
bootstrapping, the distance metric that is specific to spontaneous
facial expression recognition is learned from noisy multiple annota-
tions. In deploying, the landmarks are first located on the input
image. Then, a feature vector is built and the final recognition result
is obtained based on metric learning based kNN voting. The land-
mark annotation runs in two modes: manual and automatic. In the
manual mode, the landmark points are manually provided; in the
automatic mode, the landmark points are located by a Constrained
Local Model (CLM) based automatic tool as described in [35].

4. Facial feature extraction

We use a fusion of face shape and texture to represent a facial
expression, as shown in Fig. 4. This hybrid representation is able to
incorporate local pixel intensity variation pattern while still
adhering to shape constraint at a global level.

4.1. Shape feature

The geometric face shape information is captured by a set of 68
points known as landmarks. To remove variations in scale, orientation,
and reference point, Procrutes Analysis is employed to align these

shapes to the mean shape. Fig. 3 illustrates the superimposition of
7 basic expressions from the validated MFP before and after Procrustes
alignment.

4.2. Texture feature

The Gabor filters, with kernels similar to the 2D receptive field
profiles of the mammalian cortical simple cells [36], have been
reported to give improved facial expression recognition perfor-
mance [18,19]. Therefore, we use as facial texture features the
Gabor features.

To have face images with normalized shape and intensity, we
first linearly warp the image so that the face shape in the resulting
image is aligned with the mean shape. Then, the self-quotient
image is calculated to attenuate illumination variation, which is
obtained via a per-pixel division operation between the original
image and its Gaussian smoothed version.

Our Gabor filter bank consists of filters at 5 scales and
8 orientations. Studies in psychology show that facial features of
expressions are located around mouth, nose, and eyes, and their
locations are essential for explaining and categorizing facial
expressions [37]. Therefore, 7 local patches located around corre-
sponding landmark points are chosen as the expression salency
regions, as shown in Fig. 4. Gabor features are then calculated from
these 7 patches respectively, resulting in a feature vector of
dimension 560. Principal Component Analysis (PCA) is employed
to reduce data dimension to 80 while retaining 98% of energy.
Denoting the face shape vector and the Gabor feature vector as s
and g respectively, a particular expression could be represented as

Fig. 3. The superimposition of the shapes of 7 basic expressions from the validated MFP before and after Procrustes alignment.

Fig. 4. Feature extraction for a facial expression.
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a concatenation s of g:

x¼ ½sT ;μ � gT �T ð2Þ
where μ is a weighting factor balancing the relative importance of
shape and texture. To further reduce data dimension, PCA is
performed on x to derive the final representation of facial expres-
sion. Without causing confusion, we will still use x to represent
facial expression in the later parts of this paper.

To select a proper μ such that s and g are commensurate, we
estimate the effect of varying s on g using a similar method in [38].
To do this, we displace s from its ground truth position and the
RMS change in g per unit RMS change in s is recorded. The
weighting factor μ is set as the inverse of the average value of RMS
change of all training examples.

5. Robust metric learning for spontaneous facial expressions

In this section, we first formulate the problem of spontaneous
facial expression recognition using a Robust Metric Learning
approach, then give an efficient solution to the resulting optimiza-
tion problem via Expectation Maximization.

5.1. Robust metric learning

Let D¼ fðx1i ; x2i ; t1i ; t2i ;…; tRi Þg
n
i ¼ 1 denote a training set of n

labeled inputs, where ðx1i ; x2i Þ is the ith pair of facial expressions,
tji is a binary label which evaluates to “1” if ðx1i ; x2i Þ is considered to
be in the same class by the jth annotator and “0” otherwise, R is
the number of annotators.

Ideally, two facial expressions have a high (low) probability of
being in the same (different) class if they have a short (great)
distance between them. However, this is not necessarily the case in
the Euclidean space due to the overlapping of geometric and
appearance features. To address this problem, we propose to learn
a discriminative feature space that respects the semantic categories
of the data. Formally, given a pair of facial expressions ðx1i ; x2i Þ, the
probability of them being in the same class can be written as

pi ¼ Prðt̂i ¼ 1jx1i ; x2i ;MÞ ¼ sðb�dMðx1i ; x2i ÞÞ ð3Þ
where t̂i is the gold standard label for the ith pair of expressions,
dMðx1i ; x2i Þ is the generalized Mahalanobis distance as defined in Eq.
(1), b is the threshold separating expressions of different classes and
is set to 1 in this work, sðzÞ ¼ ð1þexpð�zÞÞ�1 is the sigmoid
function, which without any prior information makes the optimal
choice in approximating the conditional distribution of the label
given the distance between a pair of expressions [39].

In traditional supervised classification, t̂i is assumed to be the
same as the observed class label, and the optimal distance metric
can be obtained by maximizing the likelihood of the labels

max
M≽0

∑
n

i ¼ 1
t̂i ln piþð1� t̂i Þ lnð1�piÞ ð4Þ

where M≽0 restricts M to be a positive semidefinite matrix.
Unfortunately, the observed labels tend to contain errors, and
directly using them for training usually biases the classifier and
results in degraded recognition performance. Motivated by [30], we
use sensitivity and specificity to model the fact that there contains
mislabeled expressions in the training set and different annotators
vary in their annotation reliability. In particular, we define

sensitivity : α¼ ½α1;α2;…;αR�
specificity : β¼ ½β1;β2;…;βR�

where αj ¼ Pr½tj ¼ 1jt̂ ¼ 1� is the probability that the jth annotator
assigns “1” when the true label is “1”, and βj ¼ Pr½tj ¼ 0jt̂ ¼ 0� is the

probability that the jth annotator assigns “0” when the true label is
“0”. Clearly, the following probability holds

Pr½tj ¼ 0jt̂ ¼ 1� ¼ 1�αj

Pr½tj ¼ 1jt̂ ¼ 0� ¼ 1�βj

Hence, the probability of the jth annotator labeling ðx1i ; x2i Þ as tij
can be written as

Pr½tjijx1i ; x2i ;M;αj;βj� ¼ tji½αjpiþð1�βjÞð1�piÞ�þð1�tjiÞ½ð1�αjÞpiþβjð1�piÞ�
ð5Þ

Assuming that the annotators assign labels independently, the
negative log-likelihood of the labels given the expression pairs can
be written as

LðDjM;α;βÞ ¼ � ∑
n

i ¼ 1
∑
R

j ¼ 1
ftji ln½αjpiþð1�βjÞð1�piÞ�

þð1�tjiÞ ln½ð1�αjÞpiþβjð1�piÞ�g ð6Þ

In the following, we will use LðM;α;βÞ as an equivalent
notation of LðDjM;α;βÞ. The optimal model parameters can be
found as

ðMn;αn;βnÞ ¼ arg min
M;α;β

LðM;α;βÞ ð7Þ

Algorithm 1. Expectation Maximization.

1: Inputs:

Training set D¼ fðx1i ; x2i ; t1i ;…; tRi Þg
n
i ¼ 1

2: Initialize:
3: 8 i¼ 1;…;n, initialize the true label of the ith pair ðx1i ; x2i Þ

using majority voting
4:

t̂i’ 1 if ∑
R

j ¼ 1
1tji ¼ 1

 !
∑R

j ¼ 11
� �

Z0:50otherwise
.(

5: Repeat:
6: M-step:
7: 8 j¼ 1;…;R, estimate the sensitivity for the jth

annotator by
8:

αj’ ∑
n

i ¼ 1
1tji ¼ 1;t̂i ¼ 1

 !
∑
n

i ¼ 1
1t̂i ¼ 1

 !,
,

9: 8 j¼ 1;…;R, estimate the sensitivity for the jth annotator
by

10:
βj’ ∑

n

i ¼ 1
1tji ¼ 0;t̂i ¼ 0

 !
∑
n

i ¼ 1
1t̂i ¼ 0

 !,
,

11: estimate the metric matrix by
12: M’arg min

M≽0
LðM;α;βÞ

13: E-step:
14: 8 i¼ 1;…;n, predict the true label of the ith pair

ðx1i ; x2i Þ by
15:

t̂i’
1 if piZ0:5
0 otherwise

�
16: Until convergence
17: Outputs:

Mn;αn;βn

5.2. Parameter estimation

5.2.1. The Expectation Maximization framework
Intuitively, the sensitivity α, the specificity β and the distance

metric M can be estimated only when the true class labels are
known, and vice visa. To address this chicken-and-egg problem,
we present an Expectation Maximization (EM) based algorithm
that jointly estimates the annotator sensitivity/specificity, the

S. Wan, J.K. Aggarwal / Pattern Recognition 47 (2014) 1859–1868 1863



distance metric and the actual true labels. The EM algorithm for
solving Eq. (7) proceeds by iterating between two main steps, the
E-step and the M-step. The E-step estimates the true label of each
pair of expressions based on the label likelihood calculated using
the current metric M. The M-step updates ðM;α;βÞ using the
estimated true labels. See Algorithm 1 for details.

In Algorithm 1, 1A is defined to be an indicator function that
evaluates to “1” if the Boolean expression A is true and “0”
otherwise. Note that at line 12, one has to solve

arg min
M≽0

LðM;α;βÞ ð8Þ

of which the major computational challenge arises from the
positive semidefinite (p.s.d.) constraint M≽0.

Existing methods for dealing with p.s.d. constrained optimiza-
tion problem fall into two categories. The first category of methods
derives an equivalent form of the original problemwhere the p.s.d.
constraint is replaced by other easy-to-handle constraints [40,41].
Our method, Adaptive Online Metric Learning, belongs to the
second category, which directly solves for the optimal p.s.d. metric
matrix via gradient descent.

5.3. Adaptive online metric learning

Let k denote the iteration index when solving Eq. (8). A typical
batch gradient descent method updates Mk to Mkþ1 by first taking
a step along the steepest descent direction of all data points and
then projecting back to the cone of p.s.d. matrices,2 i.e.

Mkþ1’πS þ ðMk�λ∇MLðMk;α;βÞÞ ð9Þ
where πS þ ð�Þ denotes the projection onto the cone of p.s.d.
matrices. Since batch gradient descent requires expensive evalua-
tion of the gradients from all data points, it scales poorly given a
large scale dataset.

Motivated by the recent advances in online learning [24], we
propose an Adaptive Online Metric Learning algorithm (Algorithm
2) for efficiently solving Eq. (8). In contrast to the batch gradient
descent method, Algorithm 2 takes the steepest descent direction,
∇MLkðMk;α;βÞ, that diminishes the loss incurred only by the
current single data point ðx1k ; x2k Þ. The iteration stops after all the
n data points are processed one by one. Iterative methods of this
form are known to converge to the same solution as batch gradient
descent, provided that the gradient descent step size is sufficiently
small [42].

Also note that instead of using a fixed gradient descent
step size, we use an adaptively adjusted one that is inversely
proportional to ∑R

j ¼ 1t
j
kpkþð1�tjkÞð1�pkÞ. The intuition is that, if

pk, the probability of the true label being “1”, is highly consistent
with the annotated labels, then M only needs to be updated
with a small step. Therefore, the step size is set to be
λ=ð∑R

j ¼ 1t
j
kpkþð1�tjkÞð1�pkÞÞ.

Algorithm 2. Adaptive Online Learning for Eq. (8).

1: Inputs:

D¼ fðx1i ; x2i ; t1i ;…; tRi Þg
n
i ¼ 1,

α;β: the sensitivity and specificity calculated in the
current M-step,

M1: the metric at which the previous M-step converges,
λ: the step size.

2: for k¼ 1-n do
3: receive ðx1k ; x2k ; t1k ;…; tRk Þ and update Mk to Mkþ1 by

4: Mkþ1’πS þ ðMk� λ
∑R

j ¼ 1t
j
k
pk þð1� tj

k
Þð1�pkÞ

∇MLkðMk;α;βÞÞ
5: end for
6: Outputs:

M

Next, we show how to perform the p.s.d. cone projection πS þ ð�Þ
in an efficient way. Let

η¼
λ

tjk½αjþð1�βjÞ�
αjpkþð1�βjÞð1�pkÞ

þ ð1�tjkÞ½ð1�αjÞ�βj�
ð1�αjÞpkþβjð1�pkÞ

( )
pkð1�pkÞ

∑R
j ¼ 1t

j
kpkþð1�tjkÞð1�pkÞ

ð10aÞ

η′¼ ðx1k�x2k ÞT ðMkÞ�1ðx1k�x2k Þ ð10bÞ
It is easy to show that

Mk� λ

∑R
j ¼ 1t

j
kpkþð1� tjkÞð1�pkÞ

∇MLkðMk;α;βÞ ¼Mk�ηðx1k�x2k Þðx1k�x2k ÞT

ð11Þ
Then, instead of using eigen-decomposition to perform the p.s.d.
projection of Eq. (11), we use the following formula

πS þ ðMk�ηðx1k�x2k Þðx1k�x2k ÞT Þ ¼
Mk�ηðx1k�x2k Þðx1k�x2k ÞT if ηrη′

Mk�η′ðx1k�x2k Þðx1k�x2k ÞT otherwise

8<
:

ð12Þ

Proof (Derivation). See Appendix A.

In summary, our Adaptive Online Metric Learning algorithm
not only achieves faster convergence via adaptively adjusting the
gradient descent step size, but also significantly reduces the
computational workload by replacing the eigen-decomposition
based p.s.d. cone projection with a simple two-case function.
Overall, a significant efficiency gain is achieved by Algorithm 2.

6. Experiments

After learning the robust distance metric, given a novel facial
expression, its class label can be identified by first retrieving the
training examples that are predicted to be in the same class as the
novel expression, then performing majority voting using the actual
expression labels of these training examples. Two groups of
experiments are conducted in our study. In the first group, Robust
Metric Learning is extensively evaluated against a number of the
state-of-the-art methods in terms of spontaneous expression
recognition accuracy. In the second group, the spontaneous-
specific metric is used to recognize posed expressions via transfer
learning to see how well it generalizes.

6.1. Comparison of recognition accuracy

To justify the notion of Robust Metric Learning based sponta-
neous expression recognition, we conduct extensive comparative
experiments using the MFP dataset. In total, 8 different methods
are compared, including

1. EUC: the baseline Euclidean distance metric.
2. Isomap: [43], 20 nodes for neighborhood graph construction,

followed by SVM classification.
3. LLE: Locally Linear Embedding [44], 20 nodes for neighborhood

graph construction, followed by SVM classification.
4. LDA: Linear Discriminant Analysis.

2 The p.s.d. cone projection amounts to finding the nearest p.s.d. matrix in the
sense of least squared difference.
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5. SVM: Support Vector Machine, RBF kernel [45].
6. LDCRF: Latent-Dynamic Conditional Random Field, a temporal

model of internal micro-structures of facial expressions [12].
7. RobustML: the Robust Metric Learning method proposed in

this paper.
8. nrML: the non-robust version of metric learning.

For all methods but RobustML, only one label per image is used
for training, which is simply determined from the noisy labels
based on majority voting. The facial landmarks are located auto-
matically using the tool described in [35].3 We split each class of
expressions by a ratio of 3/1 for training/testing. To reduce
variability, 10 rounds of validation are performed using randomly
generated splits, and the final results are calculated by averaging
over all the 10 rounds.

Fig. 5a and b shows two recognition examples using Robust
Metric Learning. Happiness, with salient features such as wide-
open mouth, can be recognized effortlessly. Sadness is much less
distinguishable from other expressions, however, our Robust
Metric Learning method still manages to get the correct result
via the domain adapted metric.

Fig. 6 shows the per-class recognition rates of different meth-
ods.4 For space limitation, we only give the confusion matrix
obtained from SVM and RobustML respectively in Tables 2 and 3.
Two observations can be made here. First, different methods vary a
great deal in recognizing “hard” expressions such as neutrality,
fear and sadness. In particular, EUC is the least accurate. LDCRF, by
modeling the temporal variations of face shape and texture,
achieves much higher recognition accuracy than other non-
metric learning based methods. RobustML and nrML, with the
domain-specific distance metric, are the most successful in differ-
entiating the “hard” expressions, thus significantly outperforming
all other methods.

Second, RobustML outperforms nrML by 5%. This is because
annotators can vary a great deal in their respective annotation
reliability. nrML simply discards this important information by
assuming equal reliability among all annotators. Fig. 7 shows the
estimated (1-sensitivity) and (1-specificity) of the 13 annotators
using RobustML, with the annotators sorted by (1-sensitivity).
As can be seen, (1-sensitivity) ranges from 0.013 to 0.12, whereas
(1-specificity) ranges from 0.008 to 0.072, thus proving the
assumption of equally reliable annotators to be invalid. In addition,
(1-sensitivity) is consistently greater than (1-specificity). This is
because facial expressions of different classes are more likely to be

Fig. 5. Recognition examples using Robust Metric Learning. The 7 bars under each face image, from left to right, correspond to neutral, anger, disgust, fear, happiness,
sadness, and surprise respectively. Bar height is the normalized kNN voting. Both sequences start with neutral and end in the peak expression. Happiness, with salient
features such as wide-open mouth, can be recognized effortlessly. Sadness is much less distinguishable from other expressions, however, our Robust Metric Learning method
still manages to get the correct result via the domain adapted metric. (a) Recognizing sadness with effort. (b) Recognizing happiness with ease.

Fig. 6. Comparison between various methods on spontaneous expression recognition.

3 In the manual mode in which landmarks are manually provided, all methods
compared here give significantly better average recognition accuracy. In particular,
SVM gives 70.3% as compared to 55.2% in the automatic mode; RobustML gives
77.8% compared to 72.27% in the automatic mode. Due to space limitation, the
detailed experimental results from the manual mode are not presented. 4 The average recognition rate is the mean of per-class recognition rates.
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labeled as the same, but the same facial expressions are much less
likely to be labeled as different.

6.2. Generalization of the learned metric

In this experiment, we investigate how well our method
generalizes to posed expressions. This is of particular interest to
us because the expensive data labeling and retraining can be
avoided if the knowledge learned in one domain can be trans-
ferred to another. To this end, we first learn a spontaneous-specific
distance metric, then apply it to the posed expressions from the
CKþ dataset [31].

To enable knowledge transfer, we take the transductive transfer
learning approach as described in [46]. In particular, given the
labeled source data from MFP and unlabeled target data from
CKþ , we learn an optimal weighting of the source data so that its
distribution resembles the empirical distribution of target data the
most. (See [46] for details of this algorithm.) Finally, we use the
weighted source data to learn the distance metric, and test it on

the target data from CKþ . In addition, we also train and test SVM,
LDCRF and RobustML directly on the target data. Per-class recogni-
tion rate and average recognition rate are given in Fig. 8.

As can be seen, directly trained RobustML (RobustML) is better
than transferred RobustML (trRobustML) for recognizing posed
expressions. What is noteworthy is that trRobustML, with a
recognition accuracy of 78.1%, achieves comparable performance
to the directly trained SVM. In summary, our method compensates
for knowledge transfer loss by its discriminative and corrective
power, thus generalizing well to posed expressions.

7. Conclusion

In this work, we propose a Robust Metric Learning method for
spontaneous facial expression recognition. In contrast to tradi-
tional supervised classification methods, we explicitly take into
account the potential label errors when designing our method.
In particular, we collect subjective (possibly erroneous) labels from

Table 2
The confusion matrix obtained from SVM for recognizing spontaneous facial expressions.

Expressions Neutral Anger Disgust Fear Happiness Sadness Surprise

Neutral 61.8 8.7 4.9 4.4 0.0 20.2 0.0
Anger 20.1 23.5 18.9 13.2 3.4 17.3 3.6
Disgust 25.2 10.6 40.4 14.2 0.0 6.9 2.7
Fear 17.9 22.9 14.2 30.2 4.2 8.9 1.7
Happiness 0.0 1.2 2.1 0.0 96.5 0.0 0.2
Sadness 34.2 4.0 5.8 5.9 0.0 50.1 0.0
Surprise 0.0 3.1 2.5 4.1 6.2 0.0 84.1

Table 3
The confusion matrix obtained from Robust Metric Learning for recognizing spontaneous facial expressions.

Expressions Neutral Anger Disgust Fear Happiness Sadness Surprise

Neutral 93.5 1.2 0.0 1.4 0.0 3.9 0.0
Anger 14.8 34.2 20.1 10.5 5.2 7.8 7.4
Disgust 20.4 2.4 60.4 6.5 2.2 0.0 8.1
Fear 20.4 19.7 15.3 40.4 0.0 4.2 0.0
Happiness 0.0 0.7 4.9 0.0 94.4 0.0 0.0
Sadness 6.3 0.2 0.0 0.0 0.0 93.5 0.0
Surprise 0.0 1.1 0.0 4.2 5.2 0.0 89.5

Fig. 7. The (1-sensitivity) and (1-specificity) value of the 13 annotators, sorted by (1-sensitivity).

Fig. 8. Generalization of the spontaneous-specific metric to posed expressions.
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multiple annotators. In practice, there is a substantial amount of
disagreement among the annotators. The proposed Expectation
Maximization based framework iteratively establishes a particular
gold standard, measures the performance of the annotators given
that gold standard, and then refines the gold standard based on
the performance measures. In the meantime, to alleviate the
possible overlapping of geometric and appearance features of
different facial expressions, we iteratively update the distance
metric with the newly estimated annotator performance. The
resulting classification procedure is simply a majority voting
process based on the training examples retrieved using the
learned distance metric.

One drawback of the current model is that it assumes each
annotator maintains his/her performance across different expres-
sion classes. In practice, the annotator performance depends
crucially on the facial expression he/she is labeling (An annotator
is less prone to error when labeling easier expressions.) and there
is some degree of correlation among the annotators (due to culture
background, psychological perception, etc.). A simple extension
can be made by making the annotator sensitivity and specificity
depend on the class labels. This is subject to future work.
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Appendix A. Derivation of Eq. (12)

Proof (Derivation). According to Schur Complement condition,

Mk�ηðx1k�x2k Þðx1k�x2k ÞT≽0 ðA:1Þ
is equivalent to

Mk x1k�x2k
ðx1k�x2k ÞT η�1

0
@

1
A≽0

which, again by Schur Complement condition, is equivalent to

η�1�ðx1k�x2k ÞT ðMkÞ�1ðx1k�x2k ÞZ0 ðA:2Þ
or, equivalently

ηr ððx1k�x2k ÞT ðMkÞ�1ðx1k�x2k ÞÞ�1 ðA:3Þ
Let η′¼ ððx1k�x2k ÞT ðMkÞ�1ðx1k�x2k ÞÞ�1, then the projection to the p.s.
d. cone can be efficiently computed as

πS þ ðMk�ηðx1k�x2k Þðx1k�x2k ÞT Þ ¼
Mk�ηðx1k�x2k Þðx1k�x2k ÞT if ηrη′

Mk�η′ðx1k�x2k Þðx1k�x2k ÞT otherwise

8<
:

ðA:4Þ
we thus have the result. □
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