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Abstract -Major recent developments in establishing stereo correspon- 
dence for the extraction of the 3-D structure of a scene are reviewed. 
Broad categories of stereo algorithms are identified based upon differences 
in image geomewy, matching primitives, and the computational structure 
used. Performance of these stereo techniques on various classes of test 
images is reviewed and the possible direction of future research is indi- 
cated. 

I. INTRODUCTION 

major portion of the research efforts of the computer A vision community has been directed towards the 
study of the three-dimensional (3-D) structure of objects 
using machine analysis of images. Analysis of video images 
in stereo has emerged as an important passive method for 
extracting the 3-D structure of a scene. Earlier, Barnard 
and Fischler [6] presented a review covering the major 
steps involved in stereo analysis, the evaluation criteria for 
stereo algorithms, and a survey of the different approaches 
to computational stereo developed starting from the mid- 
70's up to 1981. In this paper we review the computational 
structure of the major schemes that have evolved in the 
past decade for recovering depth using stereo. 

The basic principle involved in the recovery of depth 
using passive imaging is triangulation. Many active range 
sensing techniques are also based upon the triangulation 
principle. However, in active ranging techniques that use 
triangulation, the nature of the problem is different in that 
the triangle for recovering depth is predefined by three 
points-the light source, the illuminated spot in the scene, 
and its image point. Thus, in active methods that use 
triangulation, the correspondence problem has already been 
solved by using an artificial source of illumination. 

In stereopsis, which is a passive technique, the triangula- 
tion needs to be achieved with the help of only the existing 
ambient illumination. Hence a correspondence needs to be 
established between features from two images that corre- 
spond to some physical feature in space. Then, provided 
the position of centers of projection, the effective focal 
length, the orientation of the optical axis, and the sampling 
interval of each camera are known, the depth can be 
reconstructed using triangulation. Based upon this basic 
correspondence problem, a particular matching paradigm 
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can be constructed depending upon the specific matching 
features used, the number of cameras used, the positioning 
of the cameras, and the scene domain. 

The problem of passive range sensing is important where 
there are overriding circumstantial constraints that prevent 
the use of artificial illumination or other active sources of 
radiation. Applications of stereo-based depth measurement 
include automated cartography, aircraft navigation, au- 
tonomous land rovers, robotics, industrial automation and 
stereomicroscopy. 

In the following sections, we identify broad categories of 
matching algorithms depending upon various factors like 
the imaging geometry, the matching primitives, as well as 
the matching strategy used. Within each category, the 
implementation details of the contemporary approaches 
will be highlighted. Section I1 gives an overview of the 
major steps involved in the process of stereopsis, namely, 
preprocessing, stereo matching, and depth reconstruction. 
Section I11 examines various computational theories of 
stereopsis that have been motivated by the human visual 
system. Sections IV through X describe the major compu- 
tational techniques that have been successfully tested in 
the past decade for solving the stereo correspondence 
problem. In Section IV we review area-based correlation 
schemes. Relaxation labeling processes have been used by 
many researchers to iteratively impose global consistency 
constraints on multiple matches for the purpose of disam- 
biguation, which we describe in Section V. Many stereo 
algorithms use edge segments obtained from fitting piece- 
wise linear curves to connected edges. Section VI describes 
two approaches for using edge segments in stereo match- 
ing. Stereo algorithms that utilize hierarchical computa- 
tional structures are described in Section VII. In Section 
VIII, we examine the use of dynamic programming meth- 
ods for stereo matching. The trinocular camera setup and 
the resulting matching paradigm, with both point- and 
segment-based matching algorithms, are reviewed in Sec- 
tion IX. Section X briefly describes the formulation of the 
correspondence problem using structural descriptions. Sec- 
tion XI deals with the aspect of performance evaluation of 
stereo algorithms and the various classes of test data used. 
Section XI1 contains concluding remarks. 

11. THE PROCESS OF STEREOPSIS 

The major steps involved in the process of stereopsis are 
preprocessing, establishing correspondence, and recovering 
depth. In this section we shall briefly examine each of 
them. 
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A .  Preprocessing 
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operator (or a simplified version thereof) for feature point 

Preprocessing of images is an important component of 
stereopsis. During this stage image locations satisfying 
certain well-defined feature characteristics are identified in 
each image. They have to be chosen carefully because the 
subsequent matching strategy shall make extensive use of 
these feature characteristics. 

Some of the earlier stereo algorithms used area-based 
matching schemes in which area patches from two images 
were matched [18], [48]. Points of interest were located in 
one image using certain interest operators. Moravec 1481 
proposed one such interest operator that computed the 
local maxima of a directional variance measure over a 4 x 4 
(or 8 X 8) window around a point. The sums of squares of 
differences of adjacent pixels were computed along all four 
directions (horizontal, vertical, and two diagonal), and the 
minimum sum was chosen as the value returned by the 
operator. The site of the local maximum of the values 
returned by the interest operator was chosen as a feature 
point whose stereo counterpart was to be found. 

By and large most of the contemporary stereo algo- 
rithms match features directly rather than areas (in Section 
11-B we shall examine the issues regarding area-based and 
feature-based matching). Hence, the importance of good 
feature detectors has increased. Since physical discontinu- 
ities in a scene usually project as local changes in gray-level 
intensity in an image, edges have been increasingly used as 
matchmg primitives. A large number of edge operators 
have been proposed that compute the direction of orienta- 
tion as well as the strength of an edge. Most of the edge 
operators currently in use can be classified [4] into three 
main categories: 

1) Operators that approximate certain mathematical 
derivative operators (such as the Laplacian opera- 
tor); 
Operators that involve convolution of the image 
with a set of templates tuned to different orienta- 
tions; and 
Operators that fit local gray-level intensity values 
surrounding a point with (edge) surface models and 
extract edge parameters from the model. 

2) 

3) 

The Marr-Hildreth edge operator [39] has been used by 
many algorithms for locating edge points during the fea- 
ture extraction process. The operator convolves a mask 
approximating the Laplacian of Gaussian ( v *G)  function 
(see Section 111-B) over the entire image and labels the 
zero-crossings of the convolution output as edge points. 
The edge orientation on a zero-crossing contour is given by 
the direction of the gradient of the convolution output. 
The edge strength is proportional to the magnitude of the 
gradient of the convolution output. Recently, Torre, and 
Poggio [73] have also studied the problem of using differ- 
ential operators for edge detection. 

Grimson [19]--[21], Mayhew and Frisby [44], [59], Kim 
and Aggarwal [35], and Ayache and Faverjon [l], Ayache 
and Lustman [2], among others, use the Marr-Hildreth 

extraction. The edge detectors proposed by Canny- [ll],  
and Deriche [13] are also used fairly widely for low-level 
feature extraction. Baker and Binford [3] and Ohta and 
Kanade [54] locate peaks of the magnitude of the first 
derivative of the intensity profile along a scan line as 
feature points for matching. Some, of the other popular 
gradient edge detectors are the Roberts, the Sobel, and the 
Prewitt operators [4]. Haralick [27] has proposed a step- 
edge detector based upon the second directional derivative, 
and compared its performance with the Marr-Hildreth 
zero-crossing detector and the Prewitt gradient operator. 
[22] and [26] contain interesting discussions about the 
comparison of the Marr-Hildreth and the Haralick edge 
operators. 

Medioni and Nevatia [46] used a set of oriented step-edge 
masks (Type 11) spaced at 30" intervals to extract edge 
points. Ito and Ishii [30], Harwood and Peitikainen [57], 
and others have used Type (11) edge operators consisting 
of eight template masks tuned to the eight directions of the 
compass. The mask giving the maximum output decides 
the orientation and magnitude of the edge. The edges 
obtained using this type of operators need further process- 
ing in the form of edge thnning and edge linking. 

Raj,, Binford, and Shekhar [62] have used an operator 
of Type (111) described in [50] to detect an edgel (an edge 
element). The edgel operator fits a directional tanh-surface 
to a window in the image. Edgels are characterized by their 
position and orientation. Ballard and Brown [4], and 
Rosenfeld and Kak [68] contain a more in-depth treatment 
of edge detectors. 

Linear edge segments have also been used as matching 
primitives for stereo by Medioni and Nevatia [46], Ayache 
and Faverjon [l], Ayache, and Lustman [2], Hansen, 
Ayache, and Lustman [25] and others. In the segment-based 
stereo algorithm of Medioni and Nevatia [46] edge points 
were extracted using Type (11) edge operators and fitted 
with piecewise-linear edge segments using the 
Nevatia-Babu algorithm [52]. Each edge segment descrip- 
tion consisted of the coordinates of its endpoints, its 
orientation, and the average contrast (absolute value) in 
gray-level intensity along a direction normal to its orienta- 
tion. Ayache and Faverjon [l] obtained edge points by 
using two methods. The first involved locating the zero- 
crossings in the output of the convolution of the intensity 
image with a difference-of-averages filter, and connecting 
them to obtain a chain of edge points. Then, the magni- 
tude of intensity gradient along each chain was computed 
by the Sobel operator and portions of chains having con- 
nected points with the magnitude of intensity gradient 
below a certain threshold were discarded. The second 
method used a modified version of the Canny edge detec- 
tor [ l l] .  In both cases, the intermediate results were chains 
of connected edges. Each chain of connected edges was 
then approximated by a set of linear edge segments using a 
polynomial approximation algorithm [56]. Each of the 
resulting edge segments was described using the coordi- 
nates of its midpoint, its length, and its orientation. 
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Thus, two of the major types of features extracted from 
images are edge points and line segments. 
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B. Matching 

Matching is perhaps the most important stage in stereo 
computation. Given two (or more) views of a scene, corre- 
spondence needs to be established among homologous fea- 
tures, that is, features that are projections of the same 
physical identity in each view. Matching strategies can be 
differentiated in the broadest sense according to the primi- 
tives used for matching as well as the imaging geometry. 
Differences in the matching primitives separate area-based 
matching from feature-based matching. Imaging geometry 
creates distinctions that separate parallel-axis stereo from 
nonparallel axis stereo, and binocular stereo from trinocu- 
lar (and oth6r multiocular) stereo paradigms. Local search 
procedures for possible matches are governed by the pro- 
jection geometry of the imaging system, and are expressed 
in terms of the epipolar constraints. Various local proper- 
ties of the features to be matched are used in order to 
achieve a reasonable amount of success in the local match- 
ing process. The global consistency of the local matches is 
then tested by figural continuity' or other similar con- 
straints. 

Area-based stereo techniques use correlation among 
brightness (intensity) patterns in the local neighborhood of 
a pixel in one image with brightness patterns in a corre- 
sponding neighborhood of a pixel in the other image. First, 
a point of interest is chosen in one image. A cross-correla- 
tion measure is then used to search for a point with a 
matching neighborhood in the other image. The area-based 
techniques have a disadvantage in that they use intensity 
values at each pixel directly, and are hence sensitive to 
distortions as a result of changes in viewing position 
(perspective) as well as changes in absolute intensity, con- 
trast, and illumination. Also, the presence of occluding 
boundaries in the correlation window tends to confuse the 
correlation-based matcher, often giving an erroneous depth 
estimate. 

Feature-based stereo techniques use symbolic features 
derived from intensity images rather than image intensities 
themselves. Hence, these systems are more stable towards 
changes in contrast and ambient lighting. The features 
used most commonly are either edge points or edge seg- 
ments (derived from connected edge points) that may be 
located with subpixel precision. Also feature-based meth- 
ods allow for simple comparisons between attributes of the 
features being matched, and are hence faster than correla- 
tion-based area matching methods. 

Stereo matching paradigms are also characterized by the 
particular imaging geometry being used. Factors that could 
be changed include, but are not limited to, the mutual 
orientation of the optical axes of the cameras (either 
parallel or nonparallel) and the number of cameras used 

'The concept of figure continuity constraint and its various interpreta- 
tions are discussed in Section 111. 

L b /  
baseline 

Fig. 1. Parallel axis stereo geometry. 

(either two or mofe than two). The imaging geometry of a 
conventional stereo imaging system involves a pair of 
cameras with their optical axes mutually parallel and sepa- 
rated by a horizontal distance denoted as the stereo base- 
line. The cameras have their optical axes perpendicular to 
the stereo baseline, and their image scanlines parallel to 
the baseline (horizontal). Since the displacement between 
the optical centers of the two cameras is purely horizon- 
tal, the position of corresponding points in the two images 
can differ only in the horizontal component. Fig. 1 shows 
the imaging geometry of a stereo pair of cameras. The two 
cameras are represented by their equivalent pinhole ap- 
proximation models with their image planes, IL  and I,, 
reflected about their centers of projections, 0, and OR, 
respectively. The origin of the world coordinate system is 
at 0,, the effective focal length of each camera is f, and 
the stereo baseline is b. The world coordinate axes X,, 
Y,, and Z ,  coincide with the coordinate axes of the left 
camera, X,, Y,, and Z,, respectively. Let P, (xL ,  y,, z,) 
and PR(xR,yR,zR) be the projections ofLhe 3-D scene 
point P ( x ,  y ,  z ) .  The rays of projection PO, and PO, 
define the plane of projection of the 3-D scene point called 
the epipolar plane. For a given point PL in the left image, 
its corresponding match point PR in the right image must 
lie on the line of intersection of the epipolar plane and the 
image plane that is called the epipolar line. The epipolar 
line in the right image corresponding to a point P,  in the 
left image defines the search space within which the corre- 
sponding matchpoint P, should lie in the right image. 
Thus the epipolar constraint is obtained as a result of the 
imaging geometry of the stereo camera system and helps 
limit the search space in the correspondence problem for 
stereo analysis. In the conventional parallel-axis geometry, 
all epipolar planes intersect the image planes along hori- 
zontal lines. 

However if the optical axis of any one of the cameras 
were not parallel to the world z-direction, then the epipo- 
lar lines in the image would appear inclined to the horizon- 
tal. Fig. 2 depicts a special case when the coordinate axes 
(Z, and X,) of only the right camera have been rotated 
by a pan angle 9 (about the y-axis, Y,) to ZA and X i ,  
respectively. Then the epipolar lines in the right image L,, 
L,, and L,, corresponding to points P I L ,  PZL, and P3, 
intersect at point E ,  known as the epipole center of the 
right image. In general, the coordinate system of each 
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camera could have a pan angle $I (about the world y- 
direction), a tilt angle 0 (about the world x-direction) as 
well as a roll angle a (about the world z-direction). Barnard 
and Fischler [4] contains a more detailed description of 
image acquisition and camera modeling. 

Thus, extra epipolar line computations become neces- 
sary in the case of nonparallel imaging geometry. The 
advantage of nonparallel imaging geometry is that it allows 
for a greater overlap of the left and right images of the 
scene being observed. The epipolar search for matching 
edge points is usually aided by certain geometric similarity 
constraints like similarity of edge orientation or edge 
strength. This matching process is also referred to as local 
matching. 

The match points obtained as a result of imposing the 
epipolar constraint on the local matching search could 
result in two or more candidate matches being judged as 
having almost equal possibility for getting matched. Or 
worse, an incorrect match point might satisfy the local 
matching constraints (epipolar constraint and geometric 
property constraint) and get chosen as a good match. The 
disparity obtained by computing the relative displacement 
of the matching feature points in the two images is used to 
extract the 3-D depth of the scene point that projects on 
the two matched points. Thus, if certain assumptions can 
be made regarding the nature of surfaces in the 3-D scene 
being observed, they could be used to determine the con- 
sistency of the disparities obtained as a result of the local 
matching, or guide the epipolar search so as to avoid 
inconsistent/false matching. An inherent assumption that 
is usually made about objects is that their surfaces are 
predominantly smooth. The smoothness in depth is ex- 
pected to result in the smoothness of disparities obtained 
as a result of the matching process. This is formulated in 
the form of a regonal disparity continuity constraint. Also 
the contours on the scene surface project on each image as 
continuous (or piecewise continuous) curves, whch is the 
motivation behind the figural continuity constraint. Hence 
physical features on objects that satisfy the surface 
smoothness assumption and project on the stereo pair of 
images as image features would satisfy some form of the 
disparity continuity and figural continuity constraints. This 
is otherwise referred to as global matching. Thus, local 
matching and global matching can be regarded as two 
phases of the stereo matching process. 

C. 3 - 0  Structure Determination 

The conventional parallel, axis stereo geometry provides 
a disparity value d for each matched pair of points 
Pr2(xL, y L )  and PR(xR, yR) (see Fig. 1) as, d = xL - xR. By 
considering similar triangles, the world coordinates of the 
scene point P(x, y ,  z )  can be easily obtained as 

bx L by, bf x=- d ,  y = d ,  and z = -  
d 

where b is the stereo baseline and f is the effective focal 
length of the camera. 

Fig. 2. Nonparallel axis stereo geometry 

The 3-D reconstruction process of nonparallel stereo 
systems ([l], [2], [30], [76]) requires a more general ap- 
proach, since closed form solutions may not exist for many 
cases. The lines joining the center of projection and the 
image point in each of the stereo images are projected 
backwards into space. Then the point in space that mini- 
mizes the sum of its distance from each of the back-pro- 
jected lines is chosen as the estimated 3-D position of the 
matched point. For nonparallel imaging systems using 
edge segments as matching features ([l], [2]), the end 
points of the matched edge segments are projected back- 
wards in space and the 3-D position of the segment is 
determined using a similar minimization criterion. 

111. COMPUTATIONAL THEORY OF STEREOPSIS 

Marr and Poggio [41] proposed a feature-point based 
computational model of human stereopis. Grimson [19], 
[21] developed a computer implementation of their algo- 
rithm and demonstrated the effectiveness of this model on 
standard psychological test images (random dot stere- 
ograms) as well as on natural images. A number of addi- 
tional psychophysical predictions of the Marr-Poggio 
model have been tested and several modifications have 
been proposed [17], [44], [49], [59]. After extensive testing, 
Grimson [20] embodied these modifications in a newer 
version of h s  implementation. We shall briefly review the 
implementation of Marr-Poggio theory [19], examine the 
problems associated with it, and review the modifications 
whch appear in Grimson's new implementation [20]. 

A .  Marr-Poggio Theory 

Marr and Poggio [41] based their computational struc- 
ture of the stereo fusion problem upon biological evidence. 
Some of the early works by neurophysiologists and psy- 
chologists on subjects like existence of independent spa- 
tial-frequency-tuned channels [17], [31], [33], [45], coopera- 
tive processes [31], [32], [42], and vergence eye movements 
[63]-[65], [74], [75] in the human and other biological 
vision systems were used to formulate the outline of the 
theory. 

The Marr-Poggio theory [41] proposed that the human 
visual processor solved the stereo matching problem in five 
main steps. 1) The left and right images are filtered at 
twelve different orientation-specific masks each approxi- 
mated by the difference of two Gaussian functions with 
space-constants in the ratio 1 : 1.75. 2) Zero-crossings in 
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the filtered images are found by scanning them along lines 
perpendicular to the orientation of the mask. 3) For each 
mask size, matching takes place between the zero-crossing 
segments extracted from each filtered image output that 
are of the same sign and roughly the same orientation. 
Local matching ambiguities are resolved by considering 
the disparity sign of nearby unambiguous matches. 
4) Matches obtained from wider masks control vergence 
movements aiding matches among output of smaller masks; 
5 )  The correspondence results are stored in a dynamic 
buffer called the 2.5-D sketch. 

Marr and Poggio [41] formulate two basic rules for 
matching left- and right-image descriptions. Each item in 
an image can be assigned to one and only one disparity 
value (uniqueness). Secondly, matter is cohesive. Hence 
disparity varies smoothly almost everywhere, except where 
depth discontinuities occur at surface boundaries (continu- 
ity). 

B. Grimson’s Implementation 

Grimson [ 191 implemented the computational theory of 
Marr and Poggio [41] and addressed certain implementa- 
tion details that were not covered earlier by the Marr- 
Poggio theory. 

1)  Feature Extraction: Marr and Hildreth [39] have 
shown theoretically that, provided two simple conditions 
on the image intensity function in the neighborhood of an 
edge are satisfied, intensity changes occurring at a particu- 
lar scale may be detected by locating the zero-crossings in 
the output of the v2G (Laplacian of Gaussian) filter. 
Instead of convolving each image with 12 directional DOG 
operators, each of which yield an approximation to 
the second directional derivative, Grimson [ 191 used the 
Laplacian of Gaussian ( v 2 G )  operator and grouped the 
zero-crossing points in 12 directional bins. The precise 
form of the operator is given in polar coordinates ( r ,  0)  by 

where U is the Gaussian space-constant. This is a rotation- 
ally symmetric function shaped like an inverted Mexican 
hat (Fig. 3). The width of the central negative region is 
given by w 2 - D  = 2 a u .  Grimson used three [20] or four 
[19] different sizes of filters for his images. 

2) Matching: The algorithm begins with images filtered 
by the largest filters because the reduced density of zero- 
crossings makes matching easier. The overall matching 
strategy of Grimson [19] uses a coarse-to-fine iterative 
approach with disparities found at coarser resolutions used 
to guide match-point search at finer resolutions. Marr [38], 
[41] studied the probability distribution of the interval 
between adjacent zero-crossings of the same sign obtained 
from the convolution of random dot stereograms with the 
Laplacian of Gaussian filter. The results indicated that if 
the disparity between the images is less than + ( w / 2 ) ,  a 
search for matches within the range , (w/2)  will yield 
only the correct match with probability 0.95. However the 

Fig. 3. 2-D Laplacian of Gaussian. 

alternate strategy of using a search space with range f o is 
used by Grimson [19] since it allows one to search for 
matches over a larger disparity range and yet get unam- 
biguous and correct matches with probability 0.5. In 
Grimson’s implementation [19] for each zero crossing 
PL(x ,  y )  in the left image, possible candidate matches 
P;(x’, y )  are searched for along the epipolar line in the 
right image such that, 

x + d ,  - < x’< x + d ,  + (2) 

as shown in Fig. 4(a), where d,  is the estimated disparity 
and w ( = 2 a u )  is the width of the LOG filter. Zero-cross- 
ings in the left and right images having the same contrast 
sign and approximately the same orientation (within k 30’) 
are matched. If only one match is found within the + w  
region, then that match is accepted as unambiguous, and 
the disparity is recorded. 

3) Disambiguation of multiple matches: If more than one 
match is found within the + w region, then the one having 
disparity of the same type (convergent, divergent, or zero) 
as the dominant disparity in the neighborhood is accepted. 
Otherwise the match at that point is left ambiguous. This 
can be regarded as the pulling effect which is described in 
the psychophysical experiments of Julesz and Chang [32]. 
Each 2-D array of matched results is scanned and if the 
percentage of matched points is < 0.7 then all matches in 
that region are discarded. 

C. Grimson’s Modified Implementation 
of Marr - Poggio Theory 

Grimson’s earlier implementation [19] of the Marr- 
Poggio theory [41] imposes a regional continuity check on 
disparity. Later, Grimson [20] highlights some of the prob- 
lems associated with the earlier implementation of the 
Marr-Poggio theory and presents a modified implementa- 
tion. 

1) Figural Continuity: Grimson’s implementation [ 191 of 
the Marr-Poggio theory [41] used a regional continuity 
check on disparity in order to validate the matches. 
Grimson [20] observed that this caused difficulties in prop- 
agation of disparity at occluding boundaries between ob- 
jects and along thin elongated surfaces. Elsewhere the 
matched feature points tended to form extended contours. 
Hence the figural continuity constraint of Mayhew and 
Frisby [44] that required continuity of disparity along 
contours was deemed more appropriate. 
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Vertical Disparity: There is psychophysical evidence [ 151, 
[16], [53] to suggest that the human vision system does 
resort to eye movements in order to correct gross vertical 
misalignments in the images. Accordingly, the Marr- 
Poggio algorithm [41] uses a strict epipolar matchmg strat- 
egy (see Section 111-B) after aligning the images in the 
vertical direction. However, local distortions due to per- 
spective effects, noise in early processing, and discretiza- 
tion effects cause deterioration in matching performance at 
finer resolutions [20]. In the modified stereo algorithm, for 
a zero-crossing at a point PL(x ,  y )  in the left image, 
Grimson [20] searches for the corresponding zero-crossing 
match points P;(x’,  y’) in the region 

{ ( x ’ ,  y‘) I x + d ,  - w < x ’ Q x + d ,  + O ;  
y - f < y ’ < y + E }  ( 3 )  

where w and d j  denote quantities described in (2), and 
(2c  + 1) is the height of the search space in the vertical 
direction (see Fig. 4(b)). 

D. Mayhew - Frisby Theory of Disparity Gradient 
1) Figural Continuity: Mayhew and Frisby [44] propose 

a new interpretation of the surface continuity constraint, 
to include figural continuity. They extend the Marr- 
Poggio concept [41] of continuity to imply that edges of 
surfaces and surface markings would also be continuous 
resulting in continuity of disparity along figural contours. 
Baker and Binford [3], and Ohta and Kanade [54] also 
used a similar figural continuity constraint along with the 
added restriction of left-to-right ordering of edges for 
stereo matching. 

2) Cross-Channel Activity: Mayhew and Frisby [44] pos- 
tulate the existence of interaction between several spatial- 
frequency-tuned channels in parallel, as against the se- 
quential coarse-to-fine process proposed by Marr and 
Poggio [41]. In simple terms, the rule for cross-channel 
correspondence requires that any feature attribute or pat- 
tern at a disparity location should be supported by a 
similar feature attribute or pattern in other spatial fre- 
quency channels within a certain disparity range, and that 

dissimilar cross-channel activity patterns should be re- 
jected as figurally rivalrous. 

In one stereo algorithm implemented by Mayhew and 
Frisby [44], the contrast-signed zero-crossings and peaks of 
the convolution of each image with the v 2 G  operator are 
encoded at each location for three spatial-frequency tuned 
channels , as a triplet. Fig. 5 shows a schematic representa- 
tion of using cross-channel activity according to Mayhew 
and Frisby [44]. The top row of Fig. 5 shows a triplet of 
measurement primitives found at a location in one image 
(say, left). Primitive values are marked + , - and . (nil) to 
signify positive, negative, or nonexistent zero-crossings, 
respectively. Beneath them are triplets at candidate 
match-points in the other image (say, right). The bottom 
row shows the result of the binocular cross-channel corre- 
spondence. Correct matches are marked M and incorrect 
(rivalrous) matches are marked R.  If only one image has a 
primitive at a particular channel, the entry is marked U; 
and nil entries that match are ignored (marked .). 

3) Disparity Gradient Limit: Burt and Julesz [lo] provide 
evidence supporting the claim that, for binocular fusion of 
randqm dot stereograms by the human visual system, the 
disparity gradient must not exceed 1. Pollard, Mayhew, 
and Frisby [59] suggest that for most natural scene sur- 
faces, including jagged ones, the disparity gradients be- 
tween correct matches is usually <1, whereas it is very 
rare among incorrect matches obtained for the same set of 
images. 

Consider the binocular parallel imaging geometry as 
shown in Fig. 6 with image centers O,(xoL, yo)  and 
OR( xoR, yo), separated by baseline b. Let A L (  x A  L ,  y,), 
B,(x,,, y e )  in the left image and AR(xAR, y,), 
BR(xBR,  y,) in the right image be the projections of the 
world points A ,  and B,, respectively. Then a cyclopean 
space is defined such that the origin OC(x,,, yo,) is 
defined as, 

Let A ,  and B, have disparities d ,  = x A L  - x A R  and d,  = 

xBL - x B R ,  respectively, and cyclopean images A ,  and B,, 
respectively. The disparity gradient Dg would then be 
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I + I  A tr iplet  i n  left image 

Candidate triplets in  right 

Result 

Fig. 5 .  Cross-channel correspondence 

+ b +  
Fig. 6. Imaging geometry for PMF aigorithm. 

0, = (d,  - d,)/d( A,B,), where d( A&.) is the cyclo- 
pean separation between A ,  and B,. A disparity gradient 
limit of 1 defines a cone-shaped forbidden zone for the 
point A ,  in the cyclopean space, that is, any point within 
this forbidden zone violates the criterion for disparity 
gradient limit of 1. 

Pollard, Mayhew, and Frisby [59] propose a new PMF 
algorithm that imposes a disparity gradient limiting con- 
straint among correct matches. During the matching pro- 
cess, the matching strength of each potential match is 
evaluated as a sum of the support it receives from all 
potential matches in the neighborhood that satisfy the 
disparity limit criterion. In a match-pair of feature points 
(a, ,  b,), the support for the candidate match bJ is com- 
puted as a weighted sum of the number of potential 
matches in the neighborhood of b, that have a disparity 
gradient less than 1, and vice-versa for the support of a,. 
The PMF algorithm is interested only in the positive 
support to a potential match offered by surrounding 
matches that satisfy the within-disparity-gradient-limit cri- 
terion, and is unaffected by surrounding matches that 
exceed the disparity gradient limit. The uniqueness con- 

image 

straint is propagated using a discrete relaxation scheme 
such that if two image primitives a ,  and b, have the 
highest matching strength among their respective lists of 
candidate matches, then the match-pair (a,,  b,) is consid- 
ered as correct. Pollard, Mayhew, and Frisby [59] also 
show that since a disparity gradient limit in cyclopean 
space translates to a gradient limit in the real-world space 
it is possible even for planar surfaces to violate the dispar- 
ity gradient limit criterion provided they have a suffi- 
ciently steep slope. 

E. The Coherence Principle 

Prazdny [61] has suggested the coherence principle to 
encompass the cohesiveness of matter [41] as well as the 
disparity continuity principles, which hold for opaque sur- 
face only. It recognizes the case of transparent objects. It 
allows the occurrence of a discontinuous disparity field if 
it is a result of several interlaced continuous disparity 
fields, each corresponding to a piecewise smooth surface. 
Two disparities facilitate each other if they possibly con- 
tain information about the same surface. When they do 
not interact at all they possibly contain information about 
different surfaces. 

Prazdny [61] suggests one similarity function to quantify 
similarity between neighboring disparities. A Gaussian 
similarity function s ( i ,  j )  is defined as 

This algorithm uses the quantity Id, - d,J/li - j l  in the 
exponent of the Gaussian that is the disparity gradient 
used in Julesz [9]. However, in the Burt and Julesz algo- 
rithm increase in disparity difference results in inhibition 
of support, whereas in the coherence principle of Prazdny 
[61], there is no inhbition. The disparity gradient used by 
Prazdny [61] is also similar to that in the PMF algorithm 
[591. 
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F. Multifeature-Based Matching are identified in each image by the Moravec interest opera- 

Kass [34] proposes the use of matching coefficients 
obtained from a large number of uncorrelated (indepen- 
dent) measurements to contribute towards the local match- 
ing constraint. If the local matching constraint is chosen 
appropriately it is postulated that a large fraction of the 
points in the first image will have only one potential match 
in the second image making it unnecessary to use global 
consistency measures. Kass [34] has used a stochastic im- 
age model to substantiate this computational framework. 

The local matching constraint proposed by Kass [34] 
relies on a representation of local intensity variation in the 
form of functionals f,( p ,  I ) ,  1 < i < n for each point p in 
image I .  No single image measurement (functional) is 
expected to contain all the information about the corre- 
spondence of a pair of image points. The functionals have 
been chosen to be orthogonal (low cross-correlation), lin- 
ear, shift-invariant operators. At each point p ,  a vector 

Since each functiondl h( p ,  I )  in the representation defines 
a similarity measure for correspondence, F( p L ,  I L )  - 
F( p , ,  I , )  is expected to be very small in each component, 
if p L  and p R  are truly matched. If p L  and p R  do not 
correspond, F( p L ,  I L )  - F( p, ,  I , )  will most probably have 
at least one large component. 

A predicate matchp(p,, p , )  is defined such that 
matchp( p L ,  p , )  is true if and only if, 

F( P ,  I )  = (f,< P ,  I ) ,  f2( P ,  0,- . ., f , ( p ,  0) is formed. 

V i €  { 1 , 2 ; . . , n }  

where u(x)  denotes the square root of the expected value 
of x 2  and kj are appropriate scaling constants. ( p L ,  p , )  is 
considered a correct match if matchp( p L ,  p , )  evaluates to 
true. In formulating matchp, Kass suggests one set of 
functionals 9* = 9uU9u,U9u,~ as the set of first and 
second partial derivatives of the Gaussian-smoothed im- 
ages, with the sizes of the space constants being U ,  u s ,  and 
us’, respectively. Each 3 is the set of four partial deriva- 
tives with space constant U as given by 

f, being the Gaussian smoothing mask 

1 - ( X ’  + y’) 

It is also shown that for synthetic stereo images derived 
from stationary Gaussian white noise if s >, 2.5, the 12 
functionals will have sufficiently low cross-correlations so 
that they can be regarded as approximately independent. 

IV. AREA-BASED STEREO 

Much of the earlier work done in stereo matching in- 
volves the use of correlation measures to match neighbor- 
hoods of points in the given images. Moravec [48] has used 
area-based correlation with a coarse-to-fine strategy to 
find corresponding match points. Initially feature points 

tor [48] that measures directional variance of image inten- 
sities in four directions surrounding a given pixel. Given a 
feature point P in one (source) image, the target image is 
searched at various resolutions ( X 16, X 8, X 4, and so on) 
starting from the coarsest. At each resolution the position 
in the target image that yields the highest correlation 
coefficient is enlarged to the next finer level of resolution. 
The process continues till the X l  resolution is reached. 
The same correlation process is applied to nine images 
taken two at a time to give 36 (9C2) possible stereo 
disparity values for each point of interest. The disparities 
and correlation coefficients are combined into a histogram, 
and a confidence measure is defined based upon the his- 
togram peak. Matches with a confidence measure above a 
certain threshold are accepted. 

Gennery [ 181 developed a high-resolution correlator that 
used the matches provided by the previous correlation 
matcher and produced an improved estimate of the match- 
ing point based upon the statistics of noise in the image 
intensities. Thus high-resolution correlator not only pro- 
vided improved match points but also gave an estimate of 
the accuracy of the match in the form of variances and 
covariance of the (x, y )  coordinates of the match in the 
second image. 

Hannah [23] developed a correlation-based stereo sys- 
tem for an autonomous aerial vehicle. A modified Moravec 
operator is used to select control points. Autocorrelation in 
the neighborhood of a candidate match point is used to 
evaluate the goodness of a match. Subpixel matching accu- 
racy is achieved through parabolic interpolation of correla- 
tion values. In Stereosys [24], Hannah has implemented a 
hierarchical correlation-based stereo system. Images of 
lower resolution (say, n X n )  are obtained by smoothing 
2n X 2 n  images by a Gaussian window and resampling. 
The points for which matches are to be searched for are 
picked by an interest operator as in [23]. A hill-climbing 
procedure is used to search for a match-point whose neigh- 
borhood results in a maximum in normalized cross-correla- 
tion with that of the original interesting point. Matches are 
propagated over the finer resolution images in the herar- 
chy. Matches found at the finest level are checked by 
reversing the role of left and right images, and repeating 
the hierarchical search starting from the just-found match- 
ing point. These initial matches are used to guide the 
match point search of neighboring points using the dispar- 
ity continuity constraint. Finally the sparse density map is 
interpolated to construct a dense disparity map. 

V. RELAXATION PROCESS IN STEREO 

Relaxation labeling is a fairly general model proposed 
earlier by Rosenfeld, Hummel, and Zucker [67] for scene 
labeling. In the paradigm of matching a stereo pair of 
images using relaxation labeling, a set of feature points 
(nodes) are identified in each image, and the problem 
involves assigning unique labels (or matches) to each node 
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Fig. 7. Excitatory and inhibitory neighborhoods for Marr-Poggio coop- 
erative algorithm. (a) Network of nodes for one scanline pair. 
(b) Linear excitatory neighborhood. (c) Disc-shaped excitatory neigh- 
borhood. 

out of a discrete feature space (list of possible matches). 
For each candidate pair of matches, a matching probabil- 
ity is updated iteratively depending upon the matching 
probabilities of neighboring nodes so that stronger neigh- 
boring matches improve the chances of weaker matches in 
a globally consistent manner. This interaction between 
neighboring matches is motivated by the existence of coop- 
erative processes in the biological vision systems postu- 
lated by Julesz [31], Julesz and Chang [32], Marr and 
Poggio [42], and others. 

A.  Marr - Poggio Cooperative Algorithm 

Marr and Poggio [42] and Marr, Palm, and Poggio [40] 
have used the neighborhood information of matchable 
primitives in a simple iterative scheme. For each scanline 
pair in the stereo images (Fig. 7), a two-dimensional inter- 
connected network of nodes (or cells) is set up. The 
horizontal and vertical connections are described as in- 
hibitory, meaning all cells along each horizontal (or verti- 
cal) line inhibit each other, so that finally only one match 
remains on each horizontal (or vertical) line (uniqueness 
constraint). The diagonal connections are termed excita- 
tory, meaning they favor diagonally adjacent matches to 
have the same disparity (disparity continuity). Fig. 7(b) 
shows the local disposition of the excitatory (+) and 
inhibitory ( - ) linkages in the neighborhood of a cell in the 
network. The bold lines ( L ,  = constant and R ,  = constant) 
denote inhibitory interactions, and the dotted lines (diago- 
nal, with slope = 1) denote excitatory interactions. A two- 
dimensional disparity continuity constraint can be effected 
by considering a disc-shaped excitatory neighborhood (Fig. 
7(c)). In the cooperative process, let Ci, y ;  denote the state 
of a cell at time t corresponding to the coordinate ( x ,  y )  in 

Len eye 
Right line of sight 
epipolar line I I 

line 

Fig. 8. Neighborhoods for Drumheller's implementation. 

the left-image matching ( x  + d ,  y )  in the right image. 
Initially the nodes which represent possible stereo match- 
points are loaded with 1's and all others are loaded with 
0's. Thus, when the iterations begin, each cell adds the 
states of the neighboring excitatory potential matches in 
S(x ,  y ,  d )  (the excitatory neighborhood) to the previous 
state, and subtracts from it a weighted sum of the states of 
the neighboring inhibitory potential matches in O(x,  y ,  d )  
(the inhibitory neighborhood). This iterative updating can 
be represented by the relation 

- €  c 
x ' , v ' ;  d ' E O ( X . . v , d )  

where, is the weighting factor for the inhibitor effect, and 
U is the threshold function. Ths algorithm was shown to 
obtain stereo fusion for random dot stereograms success- 
fully. It represents a very simple mechanism for the propa- 
gation of the uniqueness and the continuity constraints 
among neighboring match-points for disambiguation of 
multiple stereo matches in an iterative manner. 

Drumheller and Poggio [14] mapped the previous coop- 
erative stereopsis model of Marr, Palm and Poggio [40] on 
the Connection Machine [28], using the north-east-west- 
south (NEWS) mechanism for near-neighbor communica- 
tion. The uniqueness constraint in Drumheller and Poggio's 
implementation [14] imposed an hour-glass shaped forbid- 
den zone (see Fig. 8) and did not allow more than one 
match in the entire forbidden zone, unless the scene con- 
tained transparent or narrow occluding objects. Other vari- 
ations of the cooperative model are proposed by Prazdny 
[61], Pollard, Mayhew, Porrill, and Frisby [60] and Marro- 
quin [43]. Barnard and Thompson [7] and Kim and Aggar- 
wal [ 351 have used the principle of cooperative processing 
to formulate the relaxation-based algorithms which incor- 
porate more complicated disambiguating constraints. 

B. Barnard -Thompson Algorithm 

I )  Computation of Feature Attributes: Barnard and 
Thompson [7] extract feature points (nodes) from each 
image using the Moravec interest operator. Each node a , ,  
at position Z,(x, ,  y,) in the left image L is assigned a set 
of labels L, that represent the possible candidate matches 
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Z,(x,, y,) in the right image R within a disparity range. 
Every label set also contains a label I* in the initial stage, 
which denotes undefined disparity. A node a ,  has unde- 
fined disparity if point Z / ( x , ,  y,)  in image L does not 
correspond to any point in image R. Each label 1 of node 
a ,  is assigned a weight function w,(l) that reflects the 
degree of similarity of intensity values in the neighbor- 
hoods of the candidate pair. An initial probability estimate 
pp(1)  that the point Zl(x , ,  y , )  in image L has a disparity 1 
is then derived from the weight function w,(l). 

2) Relaxation Process: The initial probabilities p:( I) 
computed from similarity in gray-level intensity values 
surrounding the match points are now updated iteratively 
to impose global consistency. That is, the probability p,!( I) 
is increased if the neighbors of a ,  have high probability 
values for disparities close to 1. In particular, at the kth 
iteration, for a node a ,  at ( x i ,  y,) having neighbors ai at 
(x,, y,), a quantity q,!(I) is defined as 

4 3 4  = c P/k(I ')  
111 - 1'11 Q 1 

where only those neighbors ai are considered whose dis- 
parity label I' differs from I by G 1 in both x - and y - 
directions. The q,k(1) serves as a measure of consistency of 
disparity in the neighborhood because it increases if more 
neighbors of a (  i )  have disparities closer to 1. The probabil- 
ities p f ( 1 )  are updated at the kth iteration as 

a,""( I )  = pk( I )  * ( a + b * q,!( I)), 1 # I* 
and 

j,!+'(I*) =j ,"( l*)  (7) 
where a is the rate constant to delay the suppression of 
unlikely labels (prevents jk+'( l )  from going to 0 if 
qk(1) = 0), and b controls the speed of convergence. 

The iterative procedure is continued either until the 
probabilities reach a steady state or a predetermined num- 
ber of iterations are completed. This relaxation-based algo- 
rithm essentially imposes a disparity continuity constraint 
in the neighborhood of each matchpoint, favoring labels 
(disparities) consistent with the strong labels (disparities) 
occurring in the immediate neighborhood. This constraint 
is similar to the disparity continuity constraint over a 
region proposed by Marr-Poggio [41]. 

C. Kim - Agganval Algorithm 

Kim and Aggarwal [35] propose a relaxation scheme 
that combines three disambiguating constraints, namely, 
continuity of disparity, figural continuity, and smoothness 
of probability (certainty) of matching. A conventional 
parallel-axis binocular setup is considered. Edge points are 
extracted by convolving each image with the LOG operator 
and locating the zero-crossings in the output. 

1 )  Matching Primitives: A novel set of matching primi- 
tives is used. Depending upon the connectivity of the 
surrounding zero-crossings, 16 zero-crossing patterns are 
identified (see Fig. 9). A similarity measure is defined 
between two zero-crossing points depending upon the 

zero-crossing pattern surrounding each of them. The relax- 
ation process is set up on lines similar to that explained in 
Barnard and Thompson [7]. The collection of all zero- 
crossings in the left image, which do not have horizontal 
patterns, form the set of nodes { a l } .  Each node is assigned 
a set of labels L, = {I,} and a probability p , ( l , )  that node 
a ,  at point Z , ( x I ,  y,)  in left image L matches Z,(x, ,  y,) in 
right image R. A weight function ~ ~ ( 1 , )  for node a ,  with 
disparity I, is computed based upon the similarity of the 
zero-crossing patterns as well as the difference in the 
intensity gradients. The initial probability pp( I , )  that node 
a ,  has disparity I ,  is computed using the weight functions 

2)  Relaxation Process: A three-dimensional probability 
array is constructed on the zero-crossing map. The proba- 
bility of matching of node a ,  at Z / ( x , ,  y,) to a point in R 
at disparity value 1, is stored in the point ( Z / ( x , ,  y,), I,) in 
the 3-D array. In effect, it is a collection of 2-D arrays of 
probabilities corresponding to the zero-crossing map, with 
each 2-D array representing probabilities for one disparity 
value. Z,(x,, yf) and Z I ( x s ,  y,) are the first and second 
neighboring zero-crossing points of Z, (x , ,  y , )  (among the 
total 8 neighborhood points). The p:( l , ) ,  pfk(l,), and p,k(l,) 
represent the entries in the 3-D array at positions 

tively. The procedure for updating the matching probabili- 
ties is given by 

W, (1, >. 

( Z / ( X , ?  Y,)? I,)? ( Z / ( X f '  Y,). 1,) and ( Z / ( X , ,  Y,)? I,)? respec- 

P!+'@,) = P X l , )  + c * E.( P:(g) * (Pi) 
- d * P W , )  * W F S )  (8) 

where, 

P: = [ Pfk ( '1 - 
[ p,k ('J - 

9 Pfk ( '1 3 Pfk ( ' J  + I)] 

P," ('J ) P,k (I, + ')] psk = 

The foregoing formula combines three constraints-dis- 
parity continuity, figural continuity, and smoothness of 
probability of matching. The function F( pk( I,)) controls 
the rate of convergence in two ways: 1) It reduces the 
tendency to converge fast to the most probable disparity 
value so that less-probable values may still have chances to 
compete; and 2) If all other conditions are the same, the 
magnitudes of increases of higher probabilities are hgher. 
In other words, the third term in (8) implements the figural 
continuity criterion proposed by Mayhew and Frisby [a]. 
The p i  and p i  check the existence of nonzero probabili- 
ties for a match with disparity I, in the connected neigh- 
borhood of Z / ( x , ,  y,). If the connected zero-crossings do 
not have disparities within the disparity gradient limit f 1 
of I,, Z(P,) is set and the probability jk+l(l,) is decre- 
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mented. The second term in (8) reinforces the probability 
at ( Z , ( x , ,  y,), I,) if the points in the neighborhood have a 
nonzero probability for disparities close to 1, by +1. This 
is similar to the area-based disparity continuity constraint 
which checks for surface smoothness and is in common 
with the implementation of Barnard and Thompson [7]. 
However the control of the rate of convergence using 
F( p,k(l,)) is more flexible rather than a set of constants as 
used by Barnard and Thompson [7]. 

VI. STEREO MATCHING USING EDGE SEGMENTS 

The use of piecewise-linear approximations to connected 
edge points as matching primitives has been shown to be a 
viable alternative to matching of individual edge points 
([l], [2], [25], [46]). Linear edge segments have certain 
advantages over single-edge points in the matching pro- 
cess. Firstly when edge points are grouped into a piece- 
wise-linear segment, positional error at an isolated point 
has little effect on the position and orientation of the edge 
segment and most of the remaining edge points lie very 
close to the best fit, Secondly the edge connectivity con- 
straint, which states that connected edge points in one 
image must match to connected edge points in the other 
image, must be imposed as an explicit disambiguating 
constraint while matching point-like features as against 
while matching line segments. On the other hand, due to 
possible fragmentation of edge segments during prepro- 
cessing, allowance has to be made for matching a single 
segment in ofie image with two or more segments in the 
other image, and vice versa. 

A,  Minimum Differential Disparity Algorithm 

Medioni and Nevatia [46] describe a segment-based 
matching algorithm that uses a disparity continuity con- 
straint called the minimal differential disparity criterion 
applied over neighboring edge segments. 

4 O  w(ai Search ) window 2 x MAXD 

Fig. 10. Parallelogram-shaped search window. (a) Left image. (b) Right 
image. 

I )  Feature Extraction: The two stereo images, L and R ,  
are brought into vertical alignment and a parallel-axis 
imaging geometry is assumed such that the epipolar lines 
run along horizontal scan lines. The feature-extraction 
stage described by Nevatia and Babu [52] is used to extract 
linear edge segments. Each edge segment is described by 
the coordinates of its end points, its orientation, and the 
average contrast in gray-level intensity (absolute value) 
along a direction normal to its orientation. 

2) Matching Algorzthm: Let &' = { a , }  be the set of line 
segments in L,  and B = { b,} be the set of line segments in 
R. For each segment a, in L,  the search space is defined 
by a parallelogram-shaped window w ( a , )  in R whose one 
side is a, and the other side is a horizontal vector of length 
2 xMAX D ,  where MAX D is the upper limit on the 
expected disparity (see Fig. 10). Similarly for each segment 
b, in R ,  a window w(b,) is defined in L. Thus for a match 
(a,,  b,), a, lies in w(b,) and b, lies in w(a , ) .  Two segments 
x and y are said to be overlapping if by sliding either one 
of them along a direction parallel to the epipolar line, they 
can be made to intersect. Segments a, in L and b, in R 
can match only if a, and b, overlap, they have similar 
contrast in gray-levels, and have similar orientations. 
9,(a,)  c w ( a , )  denotes the set of all possible matches for 
a, of L. A segment a, in one image can be matched to two 
(or more) segments b,l, br2; . e ,  b,, in the other image 
provided none of the candidates b,l,. . . , b,, overlap with 
each other. 

An evaluation function u'(z, j )  is computed iteratively to 
determine the merit of each match (a,,  b,) as 
u ' + l ( i ,  j )  

+ c  min ' i j h k l d h k  - d,,I/card(a,) (9) 
hk E w ( a , )  uh verifies C 2 ( h k )  

where denotes the smaller of the overlap lengths for 
the match-pairs (a , ,  b,) and ( a h ,  bk). The card (a,)  and 
card (b,) are the number of segments in w ( a , )  and w(b,), 
respectively. Condition Cl(ah) allows for a, and ah to be 
matched to the same segment b,( = bk) only if a, and ah 
do not overlap, and vice versa for condition C,(bk). This 
allows for the possibility that if a ,  and ah are parts of a 
fragmented segment, they can get mapped to a single 
(unfragmented) segment b,. The evaluation function U (  I ,  j )  
is updated during each iteration depending upon the dis- 
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Fig. 11. Disparity change across linear segments. (a) Left image. 
(b) Right image. 

parities between the segments neighboring a ,  and b,, and 
their respective preferred matches. For each segment a ,  in 
the window w(b,) (recall, w(b,) defines a neighborhood of 
a , )  a preferred match b, is found such that, Id,, - d,,l is 
minimized. During the first iteration, the selection of b, 
for each U,, is done from among the complete set YP(u,)  
since the set of preferred matches is empty. For each a,, 
the match which yields the lowest u ( i ,  j )  is chosen as the 
preferred match. 

Since this matching algorithm minimizes the disparity 
difference among matched line segments in a neighbor- 
hood it is termed as the minimum differential disparity 
algorithm. This, in effect, imposes a condition that the 
matched line segment pairs, when reconstructed in space, 
form 3-D contours of surfaces that are smooth almost 
everywhere. Thus this matching algorithm has imple- 
mented the surface continuity constraint proposed by Marr 
and Poggio [41] for a paradigm of stereo matching that 
uses line segments as matching primitives. 

Recently, Mohan, Medioni, and Nevatia [47] have pro- 
posed a scheme to detect and correct local segment-match- 
ing errors based upon disparity variation across linear 
segments. Let A B  and CD (Fig. 11) be matching linear 
segments (or linear approximations to segments), and let 
C'D' be the position of CD when superposed such that 
pixels with zero disparity coincide. Then it can be shown 
that disparity varies linearly along the length of the 
matched segments, and 

- constant (10) 
d A  d B  

1-w- lEBl 
where dA and - d,  are the disparities associated with the 
points A and B,  respectively. 

Next we examine the matching algorithm of Ayache and 
Faverjon [ l ]  that implements the disparity gradient limit 
approach for imposing a surface smoothness constraint on 
the reconstructed scene, and for disambiguation of false 
matches within the framework of segment-based matching. 

B. Ayache - Fuuerjon Algorithm 

Ayache and Faverjon [l] use descriptions of edge seg- 
ments with the coordinates of the midpoint, the length of 
the segment, and its orientation for stereo matching. Un- 

Fig. 12. Partitioning of segments into buckets. Examples of neighbors 
of segments are S,: {SI, &, S,, S,} and &: {SI. &, S,. S,, &I}.  

like the minimum differential disparity algorithm [46], this 
method utilizes a generalized nonparallel axis imaging 
geometry and uses disparity between midpoints of match- 
ing line segments rather than average disparity between 
corresponding points that lie on matching line segments. A 
neighborhood graph is used to store the information re- 
garding the adjacency of line segments in each image and a 
disparity gradient limit criterion (defined for line seg- 
ments) is used to guide the global correspondence search. 
A neighborhood graph is constructed for each image using 
nodes to represent edge segments, and links to connect the 
nodes satisfying certain neighborhood relationships. Thus, 
each segment s, has a list of neighbors that is obtained as 
a union of buckets of segments { b,) attached to windows 
{ w k }  that it intersects (see Fig. 12). The global matchmg 
stage uses a specialized representation of potential matches 
called the disparity graph. The idea is to use the disparity 
graph to propagate these matches within their neighbor- 
hoods to recover subsets of 3-D segments lying on a 
smooth surface patch. 

1) Local Matching Constraints: A pair of line segments 
a ,  and b, in the left and right images, respectively, consti- 
tutes a pair of potential matches if they satisfy the geomet- 
rical similarity constraint for line segments and their mid- 
points satisfy the epipolar constraint. A pair of edge 
segments whose length ratio and orientation difference lies 
below a preset threshold satisfies the geometrical similarity 
constraint. For the midpoint I ,  of an edge segment a,,  a 
corresponding point ZR is searched for along the corre- 
sponding epipolar line near an expected disparity value. 
Ayache and Faverjon [1] compute disparity i n z c a s e  of a 
pair of edge segments as follows (Fig. 13). If P#,& (part of 
segment b,) with midpoint I ,  be a candidate match-seg- 
ment for P,Q, (part of segment a , )  with center I,., then 
the disparity d,, between a,  and b, is defined by 

- 

where, E,  and ER are the epipole centers in the left and 
right images, respectively. 
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Fig. 13. Disparity for matched segment pair. 

2) Global Matching Constraints: The global matching 
scheme of the Ayache-Favejon algorithm [ l ]  consists of a 
prediction and recursive propagation process. A disparity 
graph is constructed with nodes as pairs of potential 
matches (a, ,  b,) between the left and right images, and 
edges that connect pairs of nodes (a,,  b,),( a:, b;) that are 
adjacent segments in their respective neighborhood graphs. 
The allowable difference in disparity among neighboring 
nodes of matched pairs in the disparity graph is called the 
disparity gradient limit and corresponds to an z variation 
in depth. For each node of the disparity graph (a,,  b,), the 
neighborhood graphs of ( a , )  and (b,) are recursively ex- 
plored for potential matched pairs that have disparities 
within the allowable disparity interval. Out of the potential 
matches the one with disparity closest to the predicted 
disparity is chosen. This favors those matches of line 
segments that make the 3-D scene maximally smooth in 
the sense of surface continuity as proposed by Marr and 
Poggio [41] .  

VII. HIERARCHICAL APPROACHES 
TO STEREO MATCHING 

In this section we consider algorithms that utilize a 
hierarchical computational structure for stereo matching. 
The hierarchical structure of the algorithms allows match- 
ing information to be interchanged amongst various levels 
of matching computations, thus imposing global consis- 
tency in the disparity map. Apart from the Marr- 
Poggio-Grimson algorithm [19], [41] considered in Section 
111, the computational models of Terzopoulos [71], Hoff 
and Ahuja [29],  and Lim and Binford [37] are some exam- 
ples of hierarchical approaches to stereo matching. 

A .  Concurrent Multilevel Relaxation 

Terzopoulos [71],  [72] has developed an efficient multi- 
level relaxation computational model for low-level visual 
processing in concurrent mode. Conventional multigrid 
schemes employ recursive coordination of computations 
and flow of intermediate results starting from the coarsest 
level and proceeding successively to the finest level. Re- 
sults at any level are used as approximations for the next 
level. With the advent of massively parallel architectures, 
such sequential algorithms result in inefficient use of hard- 
ware because most of the time is spent performing relax- 
ations on only a single level, while processors at other 

levels (if configured in a multilevel architecture) remain 
idle. The concurrent strategy of Terzopoulos [71] maintains 
processors on all levels busy performing simultaneous re- 
laxation operations. The concurrent strategy seeks to opti- 
mize a multilevel objective functional, with each term 
having three components: 1) A discrete version of the 
given functional at each level of a multigrid hierarchy; 2) 
an additive functional coupling each level (except the 
finest) to its next finer level; and 3 )  an additive functional 
coupling each level (except the coarsest) to the next coarser 
level. A concurrent multigrid algorithm for the problem of 
computing visible surface representations as formulated in 
[70] has been implemented. 

B. Surfaces from Stereo: An Integrated Approach 

Hoff and Ahuja [29] have argued in favor of integrating 
the steps of stereo matchng and surface interpolation. 
Objects have faces that have a smooth variation in surface 
normals. Object surface meet on ridges that are smooth (or 
piecewise smooth) curves in 3-D space. They propose an 
integration of the matchng and surface fitting processes in 
a way that the correctness of the choice of matches could 
be judged by the type of surface it produces. 

Consider a stereo pair of 4n X4n images. Edge points 
are extracted using the Laplacian of Gaussian ( v 2G) 
operator at three resolutions - n X n ,  2n X 2 n ,  and 4n X 
4n. Initial matching is performed in both left-to-right and 
right-to-left directions. For each feature point PI in, say, 
the left image a set of candidate match points {Q,} is 
selected from the right image according to similarity of 
local (or geometric) properties of feature points. A set of 
parameterized functions, planar and quadratic, are fitted 
to circular image regions centered at each grid point ( x ,  y )  
in sequence. First, up to two planar patches are chosen at 
each grid point (x,, y,)  that give the best least-squares 
fit-rating with the observed disparity z,. Secondly, 
quadratic patches are fitted at each grid point to the above 
combinations of matches. The quadratic surface contain- 
ing the most points is kept as the best fit for that grid 
point. Next, depth and orientation contours are detected 
by fitting bipartite planar patches and detecting disconti- 
nuities between the two halves. The bipartite planar patches 
are actually circular patches divided into two halves by a 
diameter with a given 3-D orientation. Finally a smooth 
surface is interpolated away from contours to yield a 
piecewise-smooth surface map at each resolution. Match- 
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ing of edges at finer resolutions is guided by the interpo- 
lated surface at the coarser resolution. 

C. From Objects to Surfaces to Edgels 

In the hierarchical stereo algorithm proposed by Lim 
and Binford [37], matching begins at the highest level 
(objects). Results of matching are propagated to each 
successive lower level (surface boundaries, junctions, and 
edgels) and are used to guide the matching of lower-level 
features. 

Edgels are detected using the Nalwa operator [ S O ]  that 
fits a tanh surface to each window in the image. Edges are 
linked into connected edges and curves (straight lines or 
conic sections) are fitted using best-fit criteria of Nalwa 
and Pauchon [51]. Surfaces are identified by tracing the 
boundaries of connected curves using both left-wall follow- 
ing as well as right-wall following strategies. Bodies are 
identified as groups of surfaces that share edges. The 
ordering information of surfaces in a body in the left-to- 
right as well as the top-to-down directions is saved to be 
used later as a matching constraint. 

Matching of bodies is attempted at the highest level. 
Bodies that lie within the limits of corresponding upper 
and lower epipolar lines (i.e., having the same extent) are 
candidate matches. Multiple candidate matches are disam- 
biguated using the left-to-right ordering of bodies along 
epipolar lines, the number of surfaces in the bodies, and 
the ordering of surfaces in the bodies. Next the system 
attempts to match surfaces that have the same extent and 
so on, down to edge segments and edgels. The advantage 
of this hierarchical stereo system is that the depth map 
obtained is already segmented and ready for surface inter- 
polation. 

D. Hierarchical Stochastic Optimization 

Barnard [5] has implemented a solution to the stereo 
matching problem using a stochastic optimization tech- 
nique called microcanonical annealing. Poggio, Torre, and 
Koch [58] have posed the stereomatching problem as im- 
posing a regularization criterion on the stereo images, 

2 
- I,(x + D ( x ,  Y ) ,  v ) ) ]  + h ( V D ) 2 )  d x d ~  (12) 

where I L ( x ,  y )  and I , ( x ,  y )  are continuous intensity func- 
tions in the left and right images, respectively, v*G is the 
LoG operator, O D  is the gradient of disparity, and X is a 
constant. The first term of the integrand in (12) can be 
understood as a measure of the difference in image bright- 
ness values of corresponding points, and the second term 
as a measure of disparity gradient. 

In the discrete version, (12) can be represented as mini- 
mizing the total potential energy E = Z E ( i ,  j ) .  Finding a 
disparity map D ( x ,  y )  that results in the minimal energy 
constitutes a solution to the stereo correspondence prob- 
lem. A stochastic optimization technique called micro- 
canonical annealing using the Creutz algorithm [12] is used 
to control the combinatorial explosion of the search in- 

volved. Actually the Creutz algorithm [ 121 (microcanonical 
annealing) is a variation of the standard simulated anneal- 
ing technique [36] used for solving combinatorial optimiza- 
tion problems. A coarse-to-fine method of computation 
speeds up the convergence process. At the coarser level, 
the number of pixel positions as well as the range of 
disparity is small. Hence a ground state can be reached 
quickly which can serve as an initial estimate for the next 
finer scale. 

VIII. STEREO MATCHING BY 
DYNAMIC PROGRAMMING 

Baker and Binford [3] use the Viterbi algorithm, a dy- 
namic programming technique, to partition the stereo 
matching problem recursively based upon the constraint 
that a left-to-right ordering of edges is preserved along a 
scanline in a stereo image pair. In this edge-based tech- 
nique, each edge is treated as a doublet, with a left 
half-edge and a right half-edge. The dynamic programming 
procedure is repeatedly applied for matching edge points 
on each scanline pair. The first and second passes of the 
Viterbi algorithm (preliminary edge correlation) match 
half-edges in the left image to those in the right image, and 
vice-versa. Next, a cooperative procedure uses an edge 
connectivity constraint to identify surface contours that 
are not continuous in disparity. That is, a connected se- 
quence of edges in one image should match a connected 
sequence of edges in the other (both L-to-R and R-to-L). 
Finally, an intensity-based Viterbi correlation performed 
between intensity pixels from scanline intervals lying be- 
tween the paired edges in the two images yields a denser 
depth map. 

Ohta and Kanade [54] have also used pixel intensities of 
scanline intervals (delimited by edge points) to guide the 
intrascanline matching search by dynamic programming. 
This intrascanline search is formulated as a path-finding 
problem in a 2-D search space in which vertical and 
horizontal axes are the right and left scanlines, respec- 
tively. This is achieved by defining a cost function associ- 
ated with each partial path based upon variances of gray- 
level intensities of the scanline intervals being matched. 
The edges are numbered from left to right on each scan- 
line, with two ends of each scanline being also treated as 
nodes. If there are A4 nodes in the left scanline and N 
nodes in the right scanline, the solution to the intra-scan- 
line search could be represented as a path comprised of a 
sequence of straight lines form node (0,O) to node ( M ,  N )  
with the optimum cost. The cost of the optimal path from 
node (0,O) to node m is denoted by D ( m ) ,  and is the sum 
of the costs of its primitive paths. A primitive path be- 
tween nodes k and m is a partial path that contains no 
vertices as in Fig. 14. The cost of the optimal path D ( m )  is 
obtained by recursively adding the cost of each newly 
added primitive path to the already existing partial opti- 
mal path. The results of this intrascanline search are used 
to establish global consistency among matches achieved in 
neighboring scanlines using an interscanline search. The 
interscanline search is aimed at imposing a consistency 
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Fig. 15. Trinocular imaging geometry. 

Fig. 14. 2-D search plane for intra-scanline search. 

constraint among matches obtained at each scanline using 
edge connectivity. The problem is posed as that of finding 
the least-cost path between 3-D nodes in a 3-D search 
space. Each 3-D node is formed as a collection of the 2-D 
nodes connected across scanlines. The optimal path in the 
3 -0  search space is obtained by recursively adding an 
optimal 3-D primitive path to the existing optimal partial 
path. 

The approaches of Baker and Binford [3], and Ohta and 
Kanade [54] are based on the assumption that the ordering 
of edges remains unchanged for a stereo pair. The ordering 
of corresponding edges does not remain intact in scenes 
having large differences in depth, especially if these fea- 
tures were derived from thin, ribbon-like overlapping ob- 
jects. Such a system is also liable to get confused in case of 
scenes with repetitive features especially if some of the 
features are missing in one of the images. 

IX. TRINOCULAR STEREO 

The trinocular approach to the stereo problem has been 
proposed recently as an alternative means to conduct the 
correspondence search. The basic advantage of the third 
camera has been the extra epipolar geometry constraints 
offered by the three cameras. Provided the centers of 
projection of the three cameras are noncolinear, the true 
match points in the three images satisfy the condition that 
they must lie on the conjugate epipolar lines of the other 
two cameras. This allows for disambiguation of the multi- 
ple candidate matches that are found during local binocu- 
lar-type correspondence search. 

A .  Edge-Based Trinocular Stereo 

Yachida, Kitamura, and Kimachi [76] use an edge-based 
trinocular algorithm to obtain 3-D information about ob- 
jects. Consider three cameras with centers of projection 
OB, OH,  and 0, at known positions and with their optical 
axes having known orientations (Fig. 15). The trinocular 

the image plane I,, let there be multiple match point 
candidates { PH,, PH,; . e, P H m }  along the epipolar line l B H .  
A set of epipolar lines { l,, } is constructed in I, for each 
candidate PH, E { pH,, PH,; . ., P H m } .  At the intersection 
P, of each I,, and l,,, the presence of an edge point P, 
is tested. Each triplet ( P E ,  PH, ,  P,,) is tested for local 
similarity of feature attributes, and the best match is 
considered. In case some matching ambiguities still persist, 
the matchpoint candidate that yields a disparity closest to 
that of the points in the surrounding neighborhood is 
considered the best match. Ito and Ishii [30] have proposed 
a trinocular algorithm that uses a similar epipolar search 
procedure and a matching coefficient based upon the 
difference in gray-level intensity values in a 5 X 5 neighbor- 
hood of the candidate points. If any of the edge points do 
not get matched in the first pass due to occlusion, special 
one-sided matching coefficients are used in a second pass 
to match occluded points. 

Ohta, Watanabe, and Ikeda [55]  use a third camera and 
a relaxation procedure to improve the depth map obtained 
from binocular stereo. The camera geometry involves a left 
( L ) ,  a right ( R ) ,  and an upper ( U )  camera, all having axes 
parallel to each other. The two image pairs L-U and 
L - R are processed independently using binocular stereo 
[54] to give two separate depth maps, H-depth and V- 
depth, respectively. The H-depth and V-depth values thus 
obtained are then combined into one depth image using a 
relaxation process. In this scheme, the trinocular geometry 
is used only to provide additional depth values that would 
be available from using two simultaneous binocular match- 
ing processes operating on mutually orthogonal epipolar 
lines. 

Peitikainen and Hanvood [57] have used a three-view 
system with a parallel-axis geometry. The camera geometry 
involves a base camera ( B )  and two other cameras, H and 
V, displaced in the horizontal and vertical directions, re- 
spectively. Local features of the edge points like edge 
orientations and intensity contrast are used as local simi- 
larity attributes. In addition to the trinocular epipolar 
constraints, a postprocessing algorithm using connectivity 

epipolar constraint works as follows:-For any point PE in of contours is also-used to disambiguate multiple matches. 
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scene. The edges of the skeletons form a set of primitives 
over which the following binary scalar parametric relations 
are defined. I ) Painvise Orientation: The mean orientation 
of the straight line segment joining the centroids of a pair 
of skeletal edges. 2) Distance: A function of the length of 
the straight line distance joining the two centroids of 
skeletal edge. 3 )  End-distance: A function of the length of 
the straight line distance joining the closest pair of end 
points between two edges. 

Boyer and Kak [8] have modified the exact matchng 
approach developed by Shapiro and Haralick [69] in favor 
of an information theoretic approach for acheving inexact 
structural matching by defining interprimitive distance 
measures and relational inconsistency measures. The ste- 
reomatching problem is framed as a consistent labeling 
problem. The set of primitives in the left image P = { p ,  } 
form the object set and the set of primitives in the right 
image Q = { q, } form the label set. The labeling process 
utilizes two kinds of information: knowledge about the 

(a) (b) 

~~ 

(C) 

Fig. 16. Trinocular segment matching. (a) Image 1. (b) Image 2. 
(c) Image 3. 

B. Segment-Based Trinocular Stereo 

Ayache and Lustman [2], and Hansen, Ayache, and 
Lustman [25] have applied the segment-based (binocular) 
matching technique of Ayache and Faverjon [l] to three 
views. 

In [2], Ayache and Lustman employ a prediction and 
verification scheme using neighborhood graphs of linear 
segments in three images that is an extension of the earlier 
binocular algorithm [l]. For any segment S,  in image 1, if 
a triplet ( S , ,  S,, S , )  can be found to satisfy the trinocular 
epipolar constraint of lines LI2,  L,,, and L,, (see Fig. 16), 
and have sufficient similarity in local geometric properties 
then it is retained as a potential triplet. 

Subsequently Hansen, Ayache, and Lustman [25] made 
further developments in the trinocular matching system 
using image rectification in the preprocessing stage. The 
original images are reprojected, as shown in Fig. 17 (for a 
binocular system), on a new image plane that is parallel to 
the plane containing the centers of projection of the cam- 
eras. As a result, the conjugate epipolar lines become 
parallel to each other in an image, and align themselves 
with the image coordinate frame. This reduces the search 
for matches to the horizontal and vertical lines, thus speed- 
ing up the matching process. A problem occurs when, due 
to some noise in preprocessing, a single segment (say, S,)  
in the image 1 gets broken up into two (or more) segments, 
say S, and Si in image 2 (see Fig. 18). Hansen, Ayache, 
and Lustman [25] handle the problem by allowing flexibil- 
ity in the order in which images are traversed for hypothe- 
sis generation. The problem of broken segments was also 
mentioned earlier by Peitikainen and Harwood [57]. 

attributes of each label ( U )  and knowledge about the 
relationship between labels (9). 9 captures the informa- 
tion regarding the primitive distortion process (due to 
perspective effects as well as noise effects) and consists of 
a set of conditional probabilities of an attribute talung on 
a specific value in the right image, given its value in the 
left image. 9 captures the changes in the values of rela- 
tional constraint parameters. It consists of a set of condi- 
tional probabilities, each item in the set being the probabil- 
ity that a relational parameter would take on a particular 
value in the right image having known its value in the left 
image. An event pp' is defined as the left image primitive 
p ,  being assigned to the right image primitive q, in the 
stereo mapping h.  The solution to the consistent labeling 
problem is considered optimal if the prob [ p t l ,  p : ~ ,  a ,  pin] 
is maximum, given the information in PEP and 9. That is 

max OPM: prob [ p f l ,  p i z ;  . . , p,knIoEa, A!] 

= prob[hlU, 91. (13) 

where, OPM is the optimal probability measure. The fol- 
lowing basic assumptions are made in this probabilistic 
model: 1) Information in U is independent of the infor- 
mation in %'. This is based upon the idea that relational 
information is perceived by higher-level cognition pro- 
cesses that may be independent of lower-level processes 
required for the perception of primitive attributes. 2) The 
a priori probabilities of any particular event p,"f is con- 
stant, which translates to the fact that no advance informa- 
tion is available about the correct mapping function. Based 
upon these assumptions (13) becomes 

X. STRUCTURAL STEREOPSIS OPM = (prob [ np:...i"] 1 . (prob [ ( ? p : i t 9 ] ) .  (14) 
Boyer and Kak [8] have proposed the use of structural 

descriptions of image primitives and certain information 
theoretic measures defined on the basis of the structural 
descriptions to formulate the stereo matching problem. 

The structural description of each image is derived from 
a skeletal or stick-figure representation of objects in the 

The two terms in the right hand side expression are 
referred to as the %term and 9-term. An information-the- 
oretic interprimitive distance measure DIST, (P, Q) is for- 
mulated to represent the dissimilarity between the sets of 
primitives P and Q under a specific mapping h: P - Q ,  
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Fig. 17. Rectification of two images by reprojection. 
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Fig. 18. Matching broken segments. (a) Image 1. (b) Image 2. 
(c) Image 3. 

given the information 9 about the primitive attribute 
distortion process between the two images. Also, a rela- 
tional inconsistency measure INC,( R ,  S )  is formulated to 
measure the distortion of relational parameters between 
the sets of primitives ( R  and S represent parametric 
relations between elements of the sets of primitives P 
and Q, respectively). The DIST, and INC, are defined 
to be DIST, (P, Q )  = - l og [9  term] and INC, ( R ,  S) = 

- log[ 9 term]. Then (14) becomes 

Min: DIST, (P, Q) + INC, ( R ,  S ) .  (15) 
The matching of the structural descriptions of the two 

images is performed in the following steps. For each 
primitive p ,  in the left image, a match pool of potential 
primitives { 4,) is obtained. This is achieved by accessing a 
look-up table of attributes and computing the distance 
between the two primitives. Any right primitive whose 
distance from a left primitive lies withn a certain thresh- 
old is included in the match pool. The match pool for each 
left primitive is then stored in a best-first order. A nilmap 

entry is added as the last entry of any match pool if the 
cost associated with the best-fitting primitive in that pool 
were to exceed a certain threshold value, which signifies 
that the particular primitive in the left image may not have 
a matching primitive in the right image. Finally the consis- 
tent labeling problem is solved using a backtracking tree 
search. Out of the resulting list of possible mappings 
between the two primitive sets, the one that has the lowest 
value for INCA( R ,  S )  + DIST,( P, Q) is chosen as the solu- 
tion to the consistent labeling formulation of the stereo 
matching problem. 

XI. RESULTS AND DISCUSSION 

In t h s  section we shall review the experimental results 
of some of the stereo matching algorithms and the charac- 
teristics of the test images used therein. Testing of stereo 
algorithms has not been standardized as yet in the research 
community. Different algorithms have each been tested on 
different sets of stereo images. Without standardized test 
procedures, it is difficult to comment on the relative merits 
of stereo algorithms. However, one can identify the classes 
of images that have been used to test the algorithms, 
examine their performance, and know more about the 
domain of applicability of the algorithms. 

The scene domains used for testing stereo algorithms 
have ranged from simple blocks world images to 
outdoor/aerial scenes. The block world images ([SI, [30], 
[46], [54], [55], [76]) are typically scenes depicting an as- 
sortment of objects with polyhedral, cylindrical, conical, or 
spherical surfaces characterized by sharp physical bound- 
aries and/or surface markings, all laid against a sharply 
contrasting background. Since the features being matched 
are few and most of them correspond to object boundaries, 
these images serve well as test images. Indoor (laboratory) 
scenes ([I], [2], 1251, 1571) represent a hgher degree of 
complexity in that the background of objects is no longer 
controlled. This makes the matching task more compli- 
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cated. Also, many straight line edges (provided by doors, 
windows, and furniture) with their repetitive structure add 
to the complexity of the correspondence problem. The 
outdoor/aerial scenes are by far the most unstructured of 
scene domains and pose more complex matching prob- 
lems. 

Secondly, the task of computing the accuracy of depth 
estimates and the correctness of matches is plagued with 
the problem of lack of reliable ground truth measurements. 
For example, in the case of random dot stereograms, exact 
knowledge is available about the disparity value at each 
pixel in the stereo pair. Such exactness is seldom available 
in natural outdoor scenes or indoor laboratory scenes. 
Hence accuracy of the depth estimates is, at best, deter- 
mined at a few selected points by actual measurement and 
compared with the results obtained from the stereo algo- 
rithm. Finally, stereopsis being a passive method, it suffers 
from the additional drawbacks namely, the problem of 
false matches and the sparseness of the resulting depth 
maps. 

The test images used can be broadly classified into the 
following categories: 

1) Psychophysical test patterns, 
2) Indoor scenes, 
3) Synthetic scenes, 
4) Outdoor/aerial scenes. 

We shall discuss, in brief, the experimental results ob- 
tained in each category. 

A .  Psychophysical Test Patterns 

Grimson [ 191 used random dot stereograms to compare 
the performance of the computer implementation of the 
Marr-Poggio theory [41] of stereo fusion with the results 
of numerous psychophysical experiments conducted on the 
human vision system. Random dot stereograms are pairs 
of images, each consisting of two or more planar patches 
of random dots such that when a stereo pair is fused by 
humans a 3-D structure can be perceived. Since the dispar- 
ity value is known at each pixel position for random dot 
stereograms, they can be used to test the correctness of the 
algorithm’s performance. Typical 3-D structures used by 
Grimson [19], [21] include a square block rising out of a 
planar background, a series of square planes arranged on 
top of each other like a wedding cake, and a rectangular 
staircase pattern. For most random dot stereograms, a 50 
percent dot density was used. Each stereogram was ana- 
lyzed at four spatial channels with w = 4, 9, 17 and 35 
pixels. Disparities obtained at coarser channels were used 
to guide the fusion at finer channels. In case of the pattern 
with a central square separated in depth from a second 
plane, out of 11 847 zero-crossing points only three (roughly 
0.03 percent) were wrongly matched. Similar patterns with 
dot densities 25 percent, 10 percent, and 5 percent gave 
percent mismatch errors of 0.07 percent, 0.04 percent, and 
0.06 percent, respectively. The wedding cake pattern (at 50 
percent dot density) gave 0.06 percent mismatches. Almost 

all of the mismatches occurred at the boundary between 
the planes. 

Grimson also found that the computer implementation 
[19] of the Marr-Poggio theory was in agreement with 
other psychophysical test results. Julesz [ 311 found earlier 
that the human vision system could perform binocular 
fusion even when one of the images of the stereo pair was 
blurred. The blurring caused the flat surfaces to be per- 
ceived by humans as slightly warped; nevertheless the 3-D 
structure was preserved. Grimson used Gaussian smooth- 
ing to blurr one image of the random dot stereogram 
before running the algorithm on the computer. The result- 
ing disparity map was consistent with the 3-D structure, 
but it had a slightly higher number of errors in the recon- 
structed depth. In addition, Grimson studied [19] the effect 
of adding low-frequency as well as high-frequency noise to 
the random dot patterns. The results were in agreement 
with the psychophysical evidence found by Julesz and 
Miller [33] that stereo fusion is possible for noisy stere- 
ograms if the spectrum of the noise is sufficiently far from 
the spectrum of the pattern. In one example, high-frequency 
noise was added to one image such that the maximum 
magnitude of the added noise was twice that of the maxi- 
mum magnitude of the original image. Results showed that 
matching was severely impaired for the smallest (w = 4) 
channel (17 percent wrong matches) whereas the next 
larger (w = 9) channel was only marginally affected (6 
percent wrong matches). 

Mayhew and Frisby [44] used stereograms of textured 
patterns in order to support the role of the figural continu- 
ity constraint in their computational theory of stereopsis. 
They report a significant (factor of 35) reduction in the 
ratio of potential false matches to the number of match- 
able points, after making explicit use of the figural conti- 
nuity constraint. 

Pollard, Mayhew, and Frisby [59] have tested the dispar- 
ity gradient limit approach for imposing global consistency 
among matches using random dot stereograms. They re- 
port 98 percent correct matches for random dot stere- 
ograms that have disparity gradients up to 1.0. The match- 
ing performance degrades to about 50 percent correct 
matches for a disparity gradient of 1.8. 

B. Indoor Scenes 

The simplest of the indoor scenes are composed of a few 
objects scattered against a featureless (usually dark) back- 
ground. Several stereo algorithms ([20], [30], [351, [MI, [541, 
[55] ,  [57], and [76]) have been tested on blocks world 
images. Grimson [20] presents results of matching stereo 
images of dark blocks placed against a bright background. 
In a typical blocks world scene, out of 2703 zero-crossing 
points as many as 1780 (65.9 percent) are reported to have 
been matched. The difficulty of matching blocks world 
images increases in the presence of occluding objects and 
repetitive features on the object surfaces. Medioni and 
Nevatia [46] and Ohta and Kanade [54] each report a 
matching example of a blocks scene (containing the Rubik 
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cube) that has the aforementioned characteristics. Ohta 
and Kanade [54] compared the number of mismatches (or 
inconsistencies in matching) before and after the inter- 
scanline search for the blocks world scene. The global 
constraint imposed by the interscanline search was shown 
to reduce the number of mismatches by more than a factor 
4. Ayache and Faverjon [ l ]  and Medioni and Nevatia [46] 
have reported the matching result of a stereo image pair 
depicting an industrial part. The objects being viewed are 
essentially similar and provide a means for comparing the 
performance of stereo algorithms on common ground. 

Indoor scenes of real-life laboratory environments have 
also been used for verifying stereo matching algorithms. 
Moravec’s [48] stereo algorithm was used by a mobile cart 
to navigate its way around obstacles. The stereo system 
identified world position, the height of each obstacle, and 
the associated positional error caused by the pixel resolu- 
tion of the camera and built an internal map of its immedi- 
ate surroundings. The cart made successive short runs 
punctuated by halts during which the internal map was 
updated. The cart made successful runs in both indoor and 
outdoor environments. Kim and Aggarwal [35] tested their 
algorithm on indoor room scenes. Estimated depth was 
checked against actual (measured) depth at a few selected 
points. Percent error in depth varied between 0.17 percent 
and 3.7 percent. Percentage of false matches was as low as 
2 percent for an optimum choice of parameters in the 
relaxation process. Ayache and Faverjon [l], and Hansen, 
Ayache, and Lustman [25] used indoor scenes for 
segment-based matching. The results report a maximum of 
2 percent mismatches after applying global consistency 
validation. 

such “spaghetti” contour scenes is evident by comparing 
the percentage matching errors of the highway aerial scene 
with that of the urban aerial scene (obtained from the 
Univ. of British Columbia, Vancouver) consisting mostly 
of buildings and a few roads. The same matching algo- 
rithm that resulted in 0.07 percent matching errors for the 
urban scene gave as high as 2.53 percent errors in the 
highway interchange scene. Ohta and Kanade [54] have 
also tested their algorithm on aerial scenes of the Washing- 
ton D.C. area (“Pentagon” and “White House” images). 

E. Discussion 

C. Synthetic Scenes 

Barnard and Thompson [7], Medioni and Nevatia [46], 
and Ohta and Kanade [54] have used a synthetic image 
(obtained from Control Data Corporation) for testing their 
algorithms. The correctness of matches was checked manu- 
ally. Ito and Ishii [30] have tested their trinocular matchng 
algorithm using a synthetic image of a pyramid-shaped 
block. Accuracy of depth estimates was found at selected 
points and compared with the actual depth. The process 
was then repeated with an actual block placed under 
similar conditions. In the experimental results with syn- 
thetic as well as real blocks world images of Ito and I s h  
[30], the estimated maximum percent positional error of 
the selected 3-D points was within + O S  percent with the 
maximum percent measured error. 

D. Outdoor Scenes 

Grimson [20] tested his implementation of the 
Marr-Poggio theory on a number of aerial terrain images 
(“Phoenix” and “Ft. Sill” images). An interesting case 
depicts a highway interchange scene (“ Boeing” image) that 
consists of a number of thin, elongated, and closely-spaced 
contours, each at different depths. The difficulty caused by 

“ Y  

One of the major differences among the different stereo 
algorithms discussed in this paper is the way they handle 
the global consistency of the matches obtained. As was 
mentioned earlier in Section 11-B, a stereo algorithm can 
detect false positive matches obtained as a result of the 
local matching procedure by looking for other matches in 
the neighborhood that are consistent in disparity with that 
particular match. The disparity value for a given match is 
easily translated to a depth estimate by inverting the 
perspective projection equations. The prime motivation for 
imposing some sort of continuity constraint on the dispar- 
ity values is that a mismatch would result in a disparity 
value that would translate into a strikingly discontinuous 
depth estimate as compared to the other neighboring 
points. 

Marr and Poggio [41] have proposed a coarse-to-fine 
approach for propagation of the disparity continuity in the 
neighborhood of the matches. A purely region-based ap- 
proach, as in [41], for imposing disparity continuity does 
not work very well when the scene is composed of a large 
number of thin, ribbon-like overlapping objects at various 
depths that partially overlap each other. This was recog- 
nized by many researchers like Grimson [20], Mayhew and 
Frisby [44], Kim and Aggarwal [35], Baker and Binford [3], 
and Barnard and Thompson [7], who among others have 
also included a figural continuity constraint in their stereo 
implementations. In the figural continuity constraint, a 
potential match (i, j )  is favored if all their connected, 
neighboring matches ( h ,  k )  also have similar disparities. 
Figural continuity is used in segment-based matching in an 
implicit manner by which connected edge points are 
grouped together into segments and are matched as a 
group. Medioni and Nevatia [46] apply the minimal-dif- 
ferential-disparity rule for edge segments (a,,  b,) by taking 
into account the disparity of each of the edge points in the 
segments and then taking an average disparity d l J .  In the 
segment-based matchng of Ayache and Faverjon [l], for a 
match pair ( u l ,  b,), the disparity d,, does not explicitly 
take into account the disparities of the individual points in 
the edge segments but is computed using the positions of 
midpoint of a, ( I , )  and its corresponding potential match 
in segment b, (IR). The edge segments are treated as one 
unit, and the disparity of neighboring edge segment 
matches is constrained by a disparity gradient limit (de- 
fined meciallv for edge segments). 
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Kim and Aggarwal [35] have used a relaxation (cooper- 
ative) algorithm that uses a smoothness constraint on the 
probability of matching, in addition to the aforementioned 
constraints of regional continuity of disparity and figural 
continuity. Also, rather than using individual edge points 
or edge segments, they use 16 distinct edge (zero-crossing) 
patterns as matching primitives. 

A disparity gradient limit approach is proposed in the 
PMF algorithm by Pollard, Mayhew, and Frisby [59] as an 
alternative to the figural continuity criterion, and it allows 
for matching of smooth as well as jagged surfaces. 

The left-to-right (L-to-R) ordering of edges has also 
been used as a global matching constraint to disambiguate 
multiple matches and identify false positive matches. Baker 
and Binford [3], and Ohta and Kanade [54] have used the 
L-to-R ordering constraint in their dynamic programming 
algorithm to do the intrascanline search. In the 
Ayache-Faverjon algorithm [l], an L-R ordering relation- 
ship is used in building the disparity graph of edge seg- 
ments from the left and right images. The disparity graph 
guides the prediction of matching hypotheses and thus 
controls the matching search. However, it must be noted 
that an L-R ordering constraint is not universally valid for 
guiding a binocular search. In the presence of transparent 
objects and/or thin, ribbon-like objects (also called 
spaghetti contours), differences in depth could result in the 
reversal of the L-R ordering of feature primitives on a 
scanline. 

Apart from the factors discussed previously, the perfor- 
mance of various stereo algorithms can be dependent upon 
a lot of implementation details like the choice of threshold 
factors and the rate constants used to control the conver- 
gence of iterative algorithms. Also the behavior of a stereo 
algorithm in widely different scene domains needs to be 
understood carefully before choosing any one algorithm to 
be used in an application. 

In this paper the authors have presented a broad review 
of the major recent developments in stereo algorithms. 
Experimental results of a variety of computational tech- 
niques have been grouped according to the scene domains 
on which the tests were conducted, and comparisons are 
made wherever possible. However it must be noted that 
the matching statistics like percentage error in depth, and 
percentage of mismatches mentioned in this paper appear 
as they were quoted in the respective technical publica- 
tions of the said author(s) and were not observed under 
strictly identical conditions. Hence, if the reader is inter- 
ested in building an application of a stereovision depth 
finder for a specific scene domain, a certain degree of 
caution needs to be exercised in the interpretation of the 
performance statistics and in understanding the trade-offs 
between various approaches. 

XII. CONCLUSION 

In this paper we have presented a review of the major 
techniques developed in the recent past for recovering the 
3-D structure of a scene from analysis of stereo images. 

We have outlined the three main stages of stereo analysis, 
namely, preprocessing, establishing correspondence, and 
recovering depth. Based upon the differences in matching 
primitives as well as the imaging geometry being used, 
distinctions were made between area-based and feature- 
based matching, between parallel-axis and nonparallel axis 
stereo, between point-based and segment-based matching, 
and between binocular and trinocular matching. 

We described the computational theory of stereopsis 
formulated by Marr and Poggio [41], which is motivated 
by a model of the human stereo vision system, and that 
formulates the basic constraints of uniqueness and re- 
gional continuity. Mayhew and Frisby developed further 
upon the figural continuity [44] and disparity gradient 
limit [59] criteria that impose global consistency con- 
straints in order to disambiguate false matches. In the 
successive sections, we describe the different approaches 
developed for solving the stereo correspondence problem: 
area-based matching [MI, [48], relaxation labeling [7], [35], 
dynamic programming [54], hierarchical approaches [5], 
[29], [37], [71], segment-based matching [l], [46], trinocular 
matching (edge-based [30], [55], [57], [76], as well as seg- 
ment-based [2], [25]), and structural matching [SI. The 
performance of various approaches was discussed for dif- 
ferent classes of test images and the difficulties involved in 
the evaluation of stereo algorithms were addressed. 

The major issue involved in the stereo analysis of images 
is the correspondence problem. Algorithms need to be 
improved to give a lower percentage of false matches as 
well as better accuracy of depth estimates. Performance of 
algorithms needs to be evaluated over a broad range of 
image types in order to test their robustness. Most of the 
stereo work done so far has been limited to developing 
basic stereo matching capabilities for workmg with sim- 
plistic images. A great deal of research in stereo is needed 
in order to not only overcome the abovementioned diffi- 
culties but also to apply stereo techniques to solve more 
real-world problems. 
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