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Abstract

This paper presents a novel approach for tracking hu-
mans and objects under severe occlusion. We intro-
duce a new paradigm for multiple hypotheses tracking,
observe-and-explain, as opposed to the previous paradigm
of hypothesize-and-test. Our approach efficiently enumer-
ates multiple possibilities of tracking by generating several
likely ‘explanations’ after concatenating a sufficient amount
of observations. The computational advantages of our ap-
proach over the previous paradigm under severe occlusions
are presented. The tracking system is implemented and
tested using the i-Lids dataset, which consists of videos of
humans and objects moving in a London subway station.
The experimental results show that our new approach is
able to track humans and objects accurately and reliably
even when they are completely occluded, illustrating its ad-
vantage over previous approaches.

1. Introduction

Tracking, an automated calculation of object trajecto-
ries from video data, is an important problem. The reli-
able tracking of humans and objects is particularly essen-
tial in computer vision for recognition of human activities,
which will enable construction of various applications in-
cluding smart surveillance systems, human-computer inter-
action systems, and monitoring systems in public places.
For example, the tracking of a suitcase and its owner is nec-
essary for the recognition of a human-object interaction of
a person abandoning baggage. Also, in order to recognize
group activities, a sports play analysis for example, trajec-
tories of players must be obtained. Multiple targets (i.e.
humans and objects) must be tracked (MTT), and their tra-
jectories must be analyzed.

However, occlusions among multiple humans, objects,
and scene objects make tracking a difficult problem. Figure
1 shows several types of occlusions that may occur in typi-
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Figure 1. A figure of example occlusions that may occur in moni-
toring systems.

cal monitoring environments: (a) a person occluding other
persons, (b) a scene (e.g. a pillar) occluding persons, and
(c) the scene occluded by another scene object (e.g. sub-
way train). Tracking a human fully occluded by a scene or
another human is a particularly challenging problem, since
image information of the person becomes completely un-
available during the period of the occlusion. A tracking
system that is able to consider all of the above-mentioned
occlusions has not been studied in depth previously.

In this paper, we present a novel methodology for re-
liable tracking of humans and objects, which is especially
designed to handle severe inter-object and scene-object oc-
clusions. We extend the Bayesian formulation of the track-
ing problem so that it can handle occlusions explicitly, and
present a new paradigm for finding optimum trajectories
with the maximum a posteriori probability given images.
The paradigm of observe-and-explain is introduced, as op-
posed to the previous paradigm of hypothesize-and-test that
has been widely adopted for probabilistic tracking.

Whenever there are multiple possibilities for tracking,
our system goes into ‘observation’ mode and waits until suf-
ficient information is concatenated, thereby saving unneces-
sary computations during which the status of the tracking is
unclear. Later, in order to enumerate possibilities of track-
ing, the system probabilistically generates ‘explanations’
that correspond to observations. The paper describes de-
tails of the tracking algorithms following the new paradigm
of observe-and-explain, while mathematically illustrating
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computational advantages of the observe-and-explain com-
pared to the hypothesize-and-test under severe occlusion.
Furthermore, we implement the tracking system following
our new paradigm and experimentally verify that the new
system performs superior over previous approaches.

In section 2, we discuss several previous tracking ap-
proaches. Section 3 describes the Bayesian problem formu-
lation of object tracking. We define the tracking problem
as a Bayesian inference of finding the optimum sequence
of states. Section 4 presents the paradigm of observe-and-
explain while comparing it with the previous paradigm of
hypothesize-and-test. Section 5 illustrates detailed descrip-
tion of implementation of our tracking system following the
paradigm of observe-and-explain. Experimental results are
presented in section 6, and section 7 concludes the paper.

2. Related works
The problem of tracking has widely been studied by pre-

vious researchers [13]. Recently, there has been signifi-
cant effort to address tracking problems under occlusion.
Haritaoglu et al. [5] designed a head detection method us-
ing x and y projections, and successfully segmented a con-
nected foreground region composed of more than two per-
sons. They also proposed a heuristic methodology to track
persons overlapped completely. They detected the ‘merge’
event between two human blobs, and tried to match the per-
sons before the ‘merge’ and after the ‘merge’. Elgammal
and Davis [4] attempted to handle occlusions more explic-
itly, analyzing multiple hypotheses describing which person
is in front of the other person when occluded. Zhao and
Nevatia [14] estimated the depth information of detected
persons based on their head position, and used it to handle
occlusions. Wu and Nevatia [12] adopted part-based mod-
els to overcome partial occlusions between tracked persons.

Reid [7] has established the concept of a multiple hy-
pothesis tracker (MHT), and proposed a system for prob-
abilistic tracking. Several researchers have conducted re-
search to extend the MHT framework, while focusing on
the method to overcome the main drawback of the MHT:
MHT requires an exponential amount of computations to
enumerate all possible hypotheses. As a result, various ap-
proximation algorithms have been developed for efficient
tracking. Some of them have limited the total number of hy-
potheses maintained using pruning [3, 4], while others have
developed heuristic tracking algorithms such as those us-
ing particle filtering [10, 6] and Markov chain Monte Carlo
(MCMC)-based methods [15, 9].

What we must note is that all of the above mentioned
approaches with multiple hypotheses derived from [7] fol-
low the paradigm called hypothesize-and-test: they gener-
ate multiple hypotheses when the state of the tracking is
unclear, and evaluate the hypotheses as new observations
are given later. However, this paradigm may either take an
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Figure 2. Figure of an example state describing an image frame.

exponential amount of computations or lead to poor perfor-
mance when an object (or a person) becomes fully occluded
while moving, since there does not exist any clue to prune
the hypotheses. A person passing a pillar in a subway sta-
tion environment is a good example. Linear estimation of
movements, using a Kalman filter for example [8], is one
solution. However, linear estimations cannot handle move-
ment changes during the occlusion period (e.g. a person
changing the direction or velocity while occluded), and thus
is not accurate. Therefore, in this paper, we present an al-
ternative paradigm for handling multiple hypotheses called
observe-and-explain, in order to overcome the problem of
hypothesize-and-test for handling long-term occlusions.

3. Bayesian problem definition
Here, we define the problem of tracking as a Bayesian in-

ference of calculating the posterior probabilities of trajecto-
ries. Trajectories of humans and objects in a video are mod-
eled as a sequence of ‘states’ (or ‘tracking states’), where
each of them describes the locations of persons (or objects)
being tracked in an image frame. In previous systems with a
Bayesian tracking problem definition, these locations have
commonly been described in terms of 2D coordinates or es-
timated 3D coordinates [7, 3, 10, 6, 15, 9]. In our approach,
a tracking state of each time frame, Si, is defined as a set of
2D coordinates of bounding boxes of persons, Ci, together
with a relative depth order among persons overlapped, Oi:
Si = (Ci, Oi) at time frame 1 ≤ i ≤ n. More specif-
ically, Ci is a union of a person’s id associated with the
(x, y) coordinate and (width, height) of its bounding box,
Ci = ∪ {(k, (xk

i , y
k
i , w

k
i , h

k
i ))}, and Oi is a directed graph

describing the order: a ‘child’ person is occluding its ‘par-
ent’. Figure 2 shows an example state of an image frame.
In summary,

Si = (Ci, Oi)

where Ci = ∪{(k, (xk
i , y

k
i , w

k
i , h

k
i ))}, and Oi = a directed

graph describing the order among persons.
As a result, trajectories of persons in a sequence of

image frames can be described as a sequence of states:
S1, S2, S3, ..., Sn. In the Bayesian formulation of track-



ing, the goal is to find the optimal sequence of states that
maximizes the posterior probability of the state sequence
given the input frames. That is, the goal is to detect
argmax(S1,S2,...,Sn)P (S1, S2, ..., Sn|I1, I2, ..., In) where
each Ii indicates an image at frame i.

In principle, there are an exponential number of possible
sequences to enumerate: O(rn) where r is an average num-
ber of possible states per single image frame. Further, the
size of r is quadratic (or even larger) to the size of the image
frame, preventing a brute force search from being applied.

4. Hypothesize-and-test vs. observe-and-explain

4.1. Hypothesize-and-test

Hypothesize-and-test is a paradigm for heuristic method-
ologies to find a solution for the Bayesian formulation of
the tracking problem. In the hypothesize-and-test paradigm,
each sequence of states (S1, S2, S3, ..., Sn) is treated as a
‘hypothesis’ of the tracking, and the system ‘tests’ them
by calculating a posteriori probability for each hypothe-
sis. In order to estimate the optimum hypothesis among the
exponential number of possible hypotheses, hypothesize-
and-test approaches take advantage of other existing ele-
mentary object detectors and trackers. Instead of searching
for all possibilities for each frame, hypothesize-and-test ap-
proaches maintain a few promising ‘hypotheses’ and update
(and diverge) each hypothesis using an elementary detector
and tracker. Object detection methods such as a foreground
blob detector using a background subtraction have widely
been used as elementary detectors, while tracking algo-
rithms like meanshift and blob trackers have been adopted
as elementary trackers.

In approaches following the hypothesize-and-test
paradigm, whenever a new image frame at time
n is given, each hypothesis of frame 1 to frame
(n − 1), (S1, S2, S3, ..., Sn−1) is updated to obtain
(S1, S2, S3, ..., Sn) by calculating the new state Sn based
on the state Sn−1. Results of elementary detectors and
trackers applied to the frame n are used to update the
state Sn−1. That is, Markov assumptions are usually
made so that an elementary tracker can efficiently update
each hypothesis iteratively. This update may cause one
hypothesis to diverge into two or more hypotheses, if there
are more than two possibilities of the status change of the
person. For example, a hypothesis may diverge into two
if there exists a newly detected person: one including the
new person to be present, and the other excluding the new
person as a noise detection.

Maintained hypotheses are pruned probabilistically by
‘testing’ the hypothesis. After updating hypothesis at
time n, the hypothesize-and-test system evaluates each of
them by measuring the posterior probability of the hy-
pothesis (S1, S2, S3, ..., Sn) given a sequence of images
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Figure 3. An example process of a hypothesize-and-test system.

(I1, I2, I3, ..., In). More formally, the probability of up-
dated hypotheses can be calculated as follows:

argmax(S1,...,Sn) P (S1, ..., Sn|I1, ..., In) = argmax E(n)

where

E(n) = P (I1, ..., In|S1, ..., Sn) · P (S1, ..., Sn)

= P (In|Sn) · P (Sn|Sn−1)

· P (I1, ..., In−1|S1, ..., Sn−1) · P (S1, ..., Sn−1)

= P (In|Sn) · P (Sn|Sn−1) · E(n− 1)

In most systems, rules to make a decision to diverge a hy-
pothesis are encoded a priori for computational efficiency of
the system. For example, as mentioned above, a rule spec-
ifying that the system should diverge a hypothesis when a
new person is likely to be added or removed from the scene
must be encoded a priori. Figure 3 illustrates the process of
the hypothesize-and-test system.

Diverging processes may lead the system to maintain
an exponential number of hypotheses. Most of the pre-
vious systems limited the number of maximum hypothe-
ses to maintain, in order to prevent this problem. Ap-
proaches using particle filtering or Markov chain Monte
Carlo (MCMC) avoid the hypothesis diverging process by
performing stronger hypothesis analysis at each frame (i.e.
pruning all but the most promising one) with probabilistic
reversible dynamics. However, in the case of full occlu-
sions, strong pruning may be dangerous since the appear-
ance of occluded persons (or objects) becomes unobserv-
able, preventing any meaningful evaluation on hypotheses.

4.2. Observe-and-explain

We introduce our new paradigm called observe-and-
explain, an alternative approach for finding the sequence
of tracking states that maximizes the posterior probabil-
ity. Observe-and-explain enables the efficient enumera-
tion of multiple possibilities of tracking, thereby improv-
ing reliability and accuracy of the tracking system. Instead



of diverging and maintaining all intermediate possibilities
at every time frame, observe-and-explain ‘observes’ until
enough information is concatenated to make any meaning-
ful analysis, and then probabilistically generates the most
likely ‘explanations’ on the movements of a person corre-
sponding to the observation history.

The intuition behind the observe-and-explain is to enu-
merate tracking possibilities only when the system has
enough information to evaluate them. As a result, the
observe-and-explain approach avoids the enumeration of an
exponential number of possibilities that may occur when
pruning is not possible due to insufficient data (e.g. dur-
ing when a person is fully occluded). If the system deduces
that there may be multiple possibilities regarding the status
of a person, the system postpones analyzing the status of
the person temporarily until the system ‘observes’ (i.e. re-
ceives) future image frames. Later, after the system decides
that it has sufficient information to analyze the status of the
person, multiple ‘explanations’ are generated stochastically.
An ‘explanation’ is a candidate sequence of states that is
likely to match input frames given during the ‘observation’
period. The detailed process of the approach is as follows.

If there is no occlusion, appearance, or disappearance of
persons, the system iteratively updates the locations of per-
sons being tracked using an elementary detector and tracker.
That is, if state diverging is not necessary, the system always
has a sufficient amount of information to update the track-
ing state of all persons: a single image of the next frame
is sufficient to update the state using an elementary tracker.
However, when the system decides that the tracking process
must consider multiple possibilities because of a location of
a particular person (or because of a relationship between
two persons), the system labels the location of the person
(or the relationship between the persons) as ‘to be deter-
mined’ and continues updating the other persons. The per-
son (or the relationship between persons) is left as ‘to be de-
termined’ until the system deduces that sufficient informa-
tion to analyze possibilities of the status of the person (or the
relationship between persons) has been obtained. After the
system obtains sufficient information, the system generates
several candidate ‘explanations’, which is a sequence of the
status of the person labeled as ‘to be determined’ in the ob-
served image frames. The likelihood between explanations
and image frames observed are measured probabilistically,
and the ones with low probability are pruned.

Figure 4 illustrates the process of the observe-and-
explain system. The system may prune all but the state with
the most likely ‘explanation’ or may maintain multiple hy-
potheses stochastically, depending on the implementation.
Similar to a hypothesize-and-test approach, rules to label a
location or a relationship as ‘to be determined’ and rules to
remove the label by generating ‘explanations’ are generally
encoded a priori, for efficient tracking.
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Figure 4. An example process of an observe-and-explain system.

Formal equations for labeling processes and label re-
moving processes are as follows:

argmax(S1,...,Sn) P (S1, ..., Sn|I1, ..., In)

= argmax F (S1, ..., Sn)

For update:

F (S1, ..., Sn) = F (S1, ..., Sn−1) · P (In|Sn) · P (Sn|Sn−1)

For going into the observation period:

F (S1, ..., S
−k
n ) = F (S1, ..., Sn−1) · P (In|S−k

n ) · P (S−k
n |Sn−1)

Update during observation period:

F (S1, ..., S
−k
n ) = F (S1, ..., S

−k
n−1) · P (In|S−k

n ) · P (S−k
n |S−k

n−1)

For generating explanations to exit observation period:

F (S1, ..., Sn) = F (S1, ..., Sm−1, S
−k
m , ..., S−k

n )

·P (sk
m, ..., sk

n) ·
∏

i=m to n

P (Ik
i |sk

i )

where S−k
n indicates kth object in the scene is labeled as

‘to be determined’, Ik
i is an image region related to the kth

object in the scene, and sk
i is state information related to the

kth object in the scene Si. The labeling of multiple persons
as ‘to be determined’ is also possible. Multiple labels are
concatenated and maintained independently.

The main advantage of the observe-and-explain is on its
ability to efficiently track objects even if they are fully oc-
cluded. Assume that a person walked behind a pillar while
the system is tracking him/her, for example. During the pe-
riod of the occlusion, the observe-and-explain system just
‘observes’ given images, even though there are an exponen-
tial amount of possibilities of movements of the person be-
hind the pillar. Later, if a new person is detected around the
pillar, the system will generate a limited number of ‘expla-
nations’: one describing the person is still behind the pillar,
and the others describing that the person who went behind
the pillar just came out. An ‘explanation’ assuming linear
motion of the person will have the highest prior probability.
As a result, the observe-and-explain is able to save O(qt)
amount of unnecessary computations during the occlusion
period, where q is an average number of motion possibilities
at each frame, and t is the period of the occlusion.



5. Implementation of tracking system with
observe-and-explain

In this section, we present a detailed algorithm and an
implementation of the tracking system for humans and ob-
jects based on observe-and-explain. We first describe the
elementary detectors and trackers which our new tracking
system takes advantage of. A method to calculate the likeli-
hood between an image and a state is presented next, which
is essential for a posteriori calculation process. Finally,
heuristic rules for updating the state, rules to label a tracked
human in order to enter ‘observation period’, and rules to
remove labels by constructing ‘explanations’ are presented.
These rules enable an efficient search of the optimum track-
ing solution with the observe-and-explain.

5.1. Elementary detectors and trackers

In order to provide information on a person’s existence,
two elementary object detectors have been implemented.
One is a human-blob segmentation method using a back-
ground subtraction technique. Similar to [5] and [14], fore-
ground blobs are segmented, and peaks of foreground re-
gions are detected to estimate positions of human heads.
Peaks which are reliably detected throughout a certain pe-
riod of time frames are considered candidate head positions
of a person. The second elementary detector is head detec-
tion using Viola and Jone’s object detector [11]. As a result,
bounding boxes of humans are estimated based on the loca-
tions of peaks and heads using the 3D camera model of the
scene. At each frame, results of the elementary detectors are
given to the high-level of the system, so that it can update
the state of the scene based on the detections.

In addition, we implement an elementary tracking algo-
rithm in order to help the efficient updating of states. Each
person who is currently in the state is tracked using an el-
ementary tracker. We implement a tracker adopted from
[14]. The tracker maintains an appearance model of each
person in the scene. The appearance model consists of two
arrays whose sizes are normalized. One array, M , contains
a mean pixel value of a person, and the other array, W , con-
tains a probability of each pixel being a foreground. Figure
5 shows an example of an appearance model of a person.

The elementary tracker estimates the next location of the
person by matching the image frame with the appearance
model of the person. The coordinate information of the
persons, Cn−1, and their relative depth order, On−1, are
used to search for the next location of the person. Basically,
the location of kth person at frame n, ckn, is first estimated
based on the location of ckn−1 and the velocity of the person
k. The system searches for nearby image regions from the
next location of the person estimated using its velocity with
the minimum distance between an image region and the ap-
pearance model. When matching, the perspective distortion

(c)(a)

(b)

Figure 5. (a) shows detection results of the elementary detectors.
Green rectangles are the heads detected and cyan dots are the
peaks. Yellow rectangles are the estimated bounding boxes based
on the elementary detectors. (b) shows example appearance mod-
els of persons being tracked. (c) shows an example order of the
matching-masking task of an elementary tracker.

is considered to update the size changes of bounding boxes.
The matching process is done starting from the person

who is closest to the camera, and continues following the
relative depth order, which is specified in On. Once an
image region is decided to be corresponding to a person,
the image region is masked so that it does not influence the
matching process of the persons on his/her back. Formally,

(xk
n, yk

n, wk
n, hk

n) = argmax(x,y,w,h)

∑
p

(match(Mk
p , p) ·W k

p )

where p is an each pixel in (x, y, w, h), and match(Mk
p , p)

is a constant value if p is already masked.

5.2. Measuring image likelihoods

Assume that a state describing the persons in the current
scene is provided. In order to evaluate an explanation and
calculate a posteriori probabilities, the system must be able
to calculate the likelihood of the image, P (Ii|Si). We as-
sume conditional independence among persons in the image
given the state. That is, we calculate P (Ii|Si) as:

P (Ii|Si) =
∏

k=0 to maxk

P (Ik
i |sk

i ) =
∏

k=0 to maxk

P (Ik
i |bk

i )

where bki indicates a bounding box region of kth object not
occluded by others.

The likelihood between each image region and a given
bounding box from the state, P (Ik

i |bki ), is measured by
counting a ratio of a foreground region and by calculating
pixel-wise color distances. That is,

P (Ik
i |bk

i ) = P (FgrndLkhdk
i |bk

i ) · P (ColorLkhdk
i |bk

i )

where we estimate P (FgrndLkhdk
i |bki ) to have a Gaussian

distribution over the ratio of foreground pixels in the region
bki , and P (ColorLkhdk

i |bki ) to have a Gaussian distribution
over the sum of color distances of pixels in bki .



In addition, we consider the probability of a state in-
dicating a person ‘not existing’ in a scene. Since han-
dling ‘addition’ and ‘deletion’ of a person from the state
will stochastically generate two possibilities (one with a
person and the other without a person), the system must
have the ability to calculate the probability of a person
in ‘nowhere’. Similar to positive likelihood calculations,
our system models the likelihood of a person ‘not’ in a
certain location bki , P (Ik

i |¬bki ), in terms of two indepen-
dent Gaussian distributions: P (BkgrndLkhdk

i |¬bki ) and
P (ColorNotLkhdk

i |¬bki ). Since an identical person can
exist at only one location at the same time, we calculate
the expectation of the probability of a kth person being
nowhere, P (Ik

i |¬sk
i ), by calculating P (Ik

i |¬bki ) based on
the locations that the system believes the object to be.

If a person k is labeled as ‘to be determined’ because of
the observation period, the system sets P (Ik

i |sk
i ) = 1.

5.3. State update policies for observe-and-explain

We have discussed fundamental equations in section 4.2.
The rules present in this subsection are an implementation
of observe-and-explain, which has been designed to track
humans and objects under severe occlusions such as persons
moving while fully occluded. At each frame, the system
needs to update the state sequence of the currently main-
tained hypotheses based on results from elementary detec-
tors and trackers. Probabilities of state transition as well
as likelihoods we discussed in the previous subsection are
considered for a posteriori probability calculation.

Basic updates. If there is no more than one possibility of
an update, the system simply updates the state based on the
results from the elementary tracker. We assume that the
results of the elementary tracker are the optimum updates
that maximize a posteriori probability. As a result, Sn−1 is
updated to obtain Sn as follows.

F (S1, ..., Sn) = F (S1, ..., Sn−1) · P (In|Sn) · P (Sn|Sn−1)

‘Explaining’ additions and deletions. When one of the el-
ementary detectors detects a new person from the next im-
age frame, there are three possibilities of updates: the up-
date considering new detection as a new location of an ex-
isting person, the update treating new detection as a newly
appearing person, and the update ignoring the new detection
as noise. Whenever the new detections are provided, three
‘explanations’ corresponding to three cases must be gener-
ated and evaluated. In order to construct explanations, the
newly detected person is tracked reversely starting from the
current frame, for a certain number of previous frames. The
intuition is to construct history trajectories of the newly de-
tected person to analyze whether the new detection is noise.

F (S1, ..., Sn−1, (C
′
n, O′n)) = F (S1, ..., Sn−1, (Cn, On)) · a1

F (S1, ..., Sn−t−1, (Cn−t + ck
n−t, On−t), ..., (Cn + ck

n, On))

= F (S1, ..., Sn) · a2 ·
∏

i=n−t to n

P (Ik
i |sk

i )

F (S1, ..., Sn−t−1, Sn−t + ¬sk
n−t, ..., Sn + ¬sk

n)

= F (S1, ..., Sn) · (1− a1− a2) ·
∏

i=n−t to n

P (Ik
i |¬sk

i )

where Cn is coordinates of tracked persons which are up-
dated based on the elementary tracker, C ′n is coordinates of
tracked persons which are updated based on the new detec-
tion, ck is a coordinate of the new kth person, t is a number
of time frames to analyze, and + sign indicates that we are
adding new coordinate information to an existing state.

Constant a1 is the a priori probability of an elementary
detector detecting a new location of an existing person, and
a2 is the a priori probability of a new person appearing in a
scene. a2 generally is significantly smaller than (1 − a2).
In our implementation, we have empirically chosen a1 to be
0.3 and a2 to be 0.1.

Equations for handling deletions of existing bounding
boxes of tracked persons can be posed in a similar fashion:

F (S1, ..., Sn−t−1, (Cn−t − ck
n−t + ¬ck

n−t, On−t),

..., (Cn − ck
n + ¬ck

n, On))

= F (S1, ..., Sn) · a3 ·
∏

i=n−t to n

(
P (Ik

i |¬sk
i )/P (Ik

i |sk
i )
)

where ck is a coordinate of the existing kth person and a3 is
a priori probability of a removal. We empirically set a3 as
0.1 when it is not near the scene boundary and as 0.9 when
near the boundary.

‘Explaining’ occlusions. There are two possibilities of a
depth order between two occluded persons, and the track-
ing system must find the order which better matches with
the observed images. However, at the initial stage of oc-
clusion (i.e. when two persons are simply touching), there
is not enough information to analyze the ordering between
the two. Therefore, the system must go into the observation
mode.
If overlap(k, l) becomes larger than 0 at time n,

F (S1, ..., S
−k,−l
n ) = F (S1, ..., Sn−1) · P (S−k,−l

n |Sn−1)

Later, when the ratio of an occluded area exceeds a cer-
tain threshold, the system generates two ‘explanations’ de-
scribing the relative depth order.
If overlap(k, l) becomes larger than τ at time n,

F (S1, ..., (Cn, Ok>l
n )) = F (S1, ..., Sm−1, S

−k,−l
m , ..., S−k,−l

n )

· d ·
n∏

i=m

P (Ik
i |(Ci, O

k>l
i )k) ·

n∏
i=m

P (Il
i |(Ci, O

k>l
i )l)

F (S1, ..., (Cn, Ok<l
n )) = F (S1, ..., Sm−1, S

−k,−l
m , ..., S−k,−l

n )

· (1− d) ·
n∏

i=m

P (Ik
i |(Ci, O

k<l
i )k) ·

n∏
i=m

P (Il
i |(Ci, O

k<l
i )l)



where Ok>l
i indicates the kth object is in front of lth object

in frame i. The variable d is a prior probability, which we
model to have a logistic distribution over (yk

n − yl
n), whose

mean is set to 0.

‘Explaining’ occluded motion. When a person becomes
fully occluded by a larger object (e.g. a pillar), the system
must stop tracking the person and go into the observation
mode. That is,
If overlap(k, l) becomes almost 1 at time n and k is the
occluded object,

F (S1, ..., S−k
n ) = F (S1, ..., Sn−1) · P (S−k

n |Sn−1)

Whenever a new person appears (i.e. whenever an ele-
mentary detector detects a new person) near the object oc-
cluding the person, there are two possibilities. The newly
detected person might be an irrelevant person, or he/she
might be the person who hid behind the pillar previously.
In the former case, the person who hid must still be behind
the pillar and the newly detected person must be handled
as we have discussed in the subsection “Explaining addi-
tion and deletion”. In the latter case, the person must have
moved through the pillar during the observation period.

We synthesize the most likely motion of the person who
hid, assuming that the person’s latest position is the loca-
tion of the person newly detected. The motion we generate
is a two-step linear motion: the first part is the person going
into the object occluding the person, and the second part is
the person going out of the occluding object. Movements
are estimated based on the velocities of the person before
being occluded and the person after reappearing. Based on
the motion estimated, the locations of the person during the
observation period, sk

i , can be recovered, enabling the cal-
culation of P (Ik

i |sk
i ). Thus, the probability function F is:

F (S1, ..., Sn) = F (S1, ..., Sm−1, S
−k
m , ..., S−k

n ) · e

·
∏

i=m to n

P (Ik
i |sk

i )

F (S1, ..., S
−k
n ) = F (S1, ..., S

−k
n−1) · (1− e) · P (In|S−k

n )

where the variable e is a prior probability associated with
the motion of the occluded person. We estimate the variable
e to have a Gaussian distribution over difference between
velocities of two steps of the motion, whose mean is 0.

6. Experiments
We test the system on the i-Lids dataset [2]. The i-Lids

dataset is composed of videos taken at a subway station in
London, UK at the resolution of 720*576 at the rate of 25
fps. The video contains a large number of occlusion events
among pedestrians and a pillar. Total of 5060 frames of the
AVSS-AB-hard sequence have been used as test data. We not
only implement our new system following the paradigm of

System Total TP Fgmt Drft Swtch FP

ObsvAndExpn 72 49 15 11 1 4
HypoAndTest 72 33 27 13 3 4

Table 1. Overall tracking accuracy of the systems on i-Lids dataset.

System Full SO Full OO Partial OO Total

ObsvAndExpn 35/45 18/31 29/34 82/110
HypoAndTest 16/45 14/31 27/34 57/110

Table 2. Accuracy of the systems in handling occlusions.

observe-and-explain, but also construct a system following
the previous approach of hypothesize-and-test which can be
viewed as our implementation of [7, 3]. Two systems are
implemented to spend a similar amount of computations, by
making hypothesize-and-test to maintain maximum h hy-
potheses. The tracking accuracy of the systems are mea-
sured and compared. In both systems, two likelihood func-
tions (P (FgrndLkhdi

n|bin) and P (ColorLkhdi
n|bin)) and

priors are estimated with separate training data. Locations
of scene objects (e.g pillar) and scene boundaries are pro-
vided to the systems a priori.

Table 1 shows the overall tracking accuracy of two sys-
tems on the test dataset. TP measures true positive tra-
jectories (i.e. totally correct) without any errors, and FP
shows the number of false positive persons the system de-
tected. Fgmt, Drft, and Swtch are types of tracking er-
rors, where Fgmt indicates that a trajectory obtained has
been fragmented, Drft indicates that a tracked person’s
ID has been drifted to another person, and Swtch specifies
the number of ID switches between two different persons.
In addition, the performance of the system in handling oc-
clusions (e.g. whether the system was able to successfully
track a person moving behind a pillar) is measured in ta-
ble 2. SO indicates “scene occlusions” and OO indicates
“inter-object occlusions”. We are able to observe that our
system with observe-and-explain performs superior to the
previous system, mainly because of our system’s ability to
handle full occlusions. As we can see from table 2, observe-
and-explain handles full occlusions (both scene-object and
inter-object) more reliably than the previous system, thus
causing the overall accuracy shown in table 1 to increase.

In addition, in order to illustrate the robustness of our
system, we analyze the difficulty of the i-Lids dataset over
other datasets in the aspect of occlusions. We compare the
rate of an average person being occluded (at least partially)
and fully occluded in two datasets: the i-Lids dataset and
the CAVIAR dataset [1], which has been commonly used
for evaluating a pedestrian tracking system. In the case of
the CAVIAR dataset, an average number of occlusions per
person is approximately 0.5 and that of full occlusions is
0.15. In the case of i-Lids dataset, the numbers are 1.52 for



Figure 6. Example tracking results of our system tested on the i-Lids dataset. (This picture is best viewed in color)

occlusions and 1.05 for full occlusions. In the i-Lids dataset,
full occlusion occurs frequently because of the pillars.

The state-of-the-art systems show 0.6˜0.7 accuracy on
the CAVIAR dataset [15, 12]. We are able to observe
that our new system performs comparably to previous sys-
tems (or better than in the aspect of occlusion handling)
even with more difficult dataset, i-Lids. Furthermore, we
have tested half of the CAVIAR dataset (all files with suffix
“1cor.mpg”), obtaining overall tracking accuracy of 0.78.

7. Conclusions
We have presented the paradigm of observe-and-explain

for the tracking of humans and objects. Our observe-and-
explain is able to enumerate multiple possibilities of track-
ing efficiently, thereby enabling robust and reliable track-
ing even under severe occlusions. We designed and imple-
mented a tracking system following our new paradigm, and
have verified the advantages of our paradigm through con-
ducting experiments with the dataset which contains severe
occlusions. In future, we plan to further exploit tracking ap-
proaches with the paradigm of observe-and-explain, by in-
corporating stronger elementary detectors and trackers and
by applying other search techniques to enhance the system.
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