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Abstract

This paper presents a novel approach to object track-
ing by using multiple views to assist with handling occlu-
sion which improves the overall tracking result. The ap-
proach is applied to face tracking using a 3D cylinder head
model, but any 3D rigid object may be tracked using this
approach. All cameras in the system are used to estimate
a joint motion model of the face, which is updated at each
frame. Self-occlusion is handled by a weighted mask that
depends on the pose of the face. Full face occlusion is first
detected automatically by measuring and comparing image
histograms of the current tracking result and a face tem-
plate. If an occlusion from a camera is reported, it is not
used in the global tracking result of the face from the multi-
camera system. Experiments demonstrate that our method
succeeds in tracking in both cases of self-occlusion and full
face occlusion. Comparisons are made between single cam-
era tracking, multi-camera tracking and occlusion robust
multi-camera tracking using results from pose estimation.
The performance of the occlusion robust multi-camera face
tracking method is shown to produce more accurate esti-
mates of the face pose and is able to estimate the face pose
even under severe face occlusion.

1. Introduction

Face tracking, especially the full-motion recovery of the
face (3 translations and 3 rotations) is necessary for many
computer vision tasks such as human computer interac-
tion and surveillance. Recovering the motion of the face
robustly and accurately may assist in face expression and
recognition tasks where the alignment of the face is usually
required.

An important task within face tracking is pose estima-
tion [18]. There are many approaches in pose estimation
and they may be generally classified as either feature-based
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approaches or model-based approaches. Feature-based ap-
proaches, as in [12, 15, 16] , attempt to track features of
the face or object to recover the pose. They are regarded
as efficient and flexible but their performance depends on
the availability of good features. Model-based approaches
treat the face as a 3D object and have had much success in
tracking faces. The head may be approximated as a 3D rigid
object, so recovering the motion of the face is equivalent to
recovering the motion of the 3D object. One typical model
is a 3D cylinder head model, as seen in [1, 6, 7, 19, 20]. El-
lipsoid models may also be used as in [2, 8, 9]. [5] proposes
to use a generic 3D surface model with a more detailed 3D
shape for tracking. Since the whole face region is used in
model-based approaches, self-occlusion and full face occlu-
sion are still very challenging.

Several approaches have been tried in handling occlu-
sion in face tracking. In [21], an occlusion pixel is detected
by comparing the motion residual error of each pixel with
all pixels used in the tracking. If the motion residual error
is larger than a threshold, the pixel is classified as an out-
lier or occlusion. In some works such as in [14], occlusion
is detected simply by calculating the number of skin color
pixels. If there is very small portion of skin pixels in the
target, occlusion is detected.

In many computer vision applications it is quite com-
mon to have more than one camera available for sensing. In
this work, we propose a method which utilizes the multiple
views of a single face available in a multi-camera setting to
make a more robust face motion calculation. This method is
different from the use of stereo information, such as in [13],
since we may combine the views of any number of cameras
for the motion calculation without computing stereo. We
present a complete framework for combining the motion
from multiple views of the face into a single motion cal-
culation that is then used in all views. Although many 3D
models would suffice, We employ the cylinder head model
in this work since the relative error between the cylinder
model and the real geometry of the face is small [6] and the
cylinder model may be easily adapted to any face through
initialization of the cylinder. Additionally, the reconstructed



frontal face from the cylinder model can be used for face
recognition [10, 11].

There are two types of occlusion in our problem. The
first type is self-occlusion where some parts of the face are
hidden by other parts of the face because of the camera
view. The second type is when other objects block the cam-
era view and cause a large part of the face, or the entire face,
to become invisible. In our algorithm , we tackle the first
type of occlusion by creating a weighted mask on which in-
visible pixels are assigned the lowest weights. Our solution
to the second type of occlusion is to detect the occlusion and
turn off the motion update from that camera. This still al-
lows the tracking to continue from the other cameras which
results in stable tracking of the face.

The proposed method is demonstrated on two typical
video sequences from three cameras with ground truth pose
of the face obtained from a checker pattern. We show two
main results. First, the multi-camera based face tracking
method is far superior to the single camera tracking result
from all cameras. Second, in the presence of occlusion, the
occlusion robust multi-camera face tracking significantly
outperforms both the multi-camera based method and the
single camera tracking. Both numerical pose estimation re-
sults and visual examples of the tracking with each method
are shown. Please note that although the focus of this pa-
per is face tracking, the proposed method may be used for
tracking any 3D rigid object in a multi-camera setting.

2. Robust Multi-Camera Face Tracking

In this section, we introduce our method of occlusion
robust multi-camera face tracking. First, we present our
method of combining the motion of the face from multi-
ple views to form a single motion using the cylinder head
model. Second, we present our method for handling occlu-
sion.

In our multi-camera system, one of the cameras is speci-
fied as “camera 17, as in Figure 1, and the world coordinate
system is based on that camera’s coordinate system.

2.1. Multi-Camera Face Tracking

In the following description of our face tracking method,
we will assume that the 3D model is the cylinder head
model [20]. However, any 3D rigid object may be used
to capture the six parameters (three translations and three
rotations) of motion that are needed to describe the motion
performed by the head.

In the world coordinate system (camera 1), the motion of
the 3D points of the cylinder is described as

X1 =M x X, (D

where
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Figure 1. Example 3 camera system viewing the same 3D cylinder

M(x,p) = Rx +T. @)

X 41 are the new coordinates of the 3D points X after a
motion of M has been applied where p is a vector repre-
senting rigid motion, including 3D rotation (w,, wy, w.) and
translation (T, Ty, %), ¢ = (2, y, z)T is a 3D coordinate
of a point on the surface of the object, M is the function
of the rigid transformation, R is the rotation matrix and T
is the translation vector. The rigid motion of the head from
time ¢ to time ¢ + 1 is denoted as Ap. If p;, = (u, v) is the
projection point in the image plane I, in camera 1 of point
x on the 3D object , then the new location of p,, in the next
frame I, is estimated as

Pity1 = Fi(p1;, Ap). 3)
The next image frame may then be computed by
I1yi1(Fi(pyys Ap)) = I14(pyy), “)

where F'; is the 2D parametric motion function of p,,. An
assumption is made that the illumination does not change
and that movement is small between frames, so the pixel
intensities between the two frames are consistent. In most
cases, this is a reasonable assumption.

The same motion of the 3D points may be seen from
the other camera’s coordinate systems and image planes. A
three camera system viewing the same 3D cylinder is shown
in Figure 1.

In the ¢th camera’s view

X1 =M * Xy &)
pit+1:Ki*Mi*Xit (6)
X, =Cix Xy @)



where C; is the 4 x 4 combined rotation and translation ma-
trix representing the transformation between the ith cam-
era’s coordinate system and the world coordinate system,
X ;; are the 3D points w.r.t. the ith camera’s coordinate sys-
tem, and p,, are the image coordinates in the 7th camera’s
view after a projection with camera matrix K.

The motion in each of the cameras is related back to the
world coordinate system in the following manner. We first
note that

X1 =C7 s Mx X =M;x X, )
Therefore,

C;i'xMxX,,=M;+xC;'+ X, 9)

M;=C;'«MxC,. (10)

Now we may rewrite the equation for motion of the ith cam-
era as

X1 =C;"

K2

We may now explicitly solve for the full-motion recov-
ery and compute Ay from the information present in all
cameras. To compute the change in rigid motion vector
Ap, the error between two successive image frames is min-
imized. This is solved by using the Lucas-Kanade image
alignment algorithm [17]. The result is

Au=-Y G &Y 1.6 (12)
Q Q
where
G =[G1G,..G,)" (13)
G, =1,F;, (14)

and where €2 is the region of overlapping pixels between
the two frames, F';, is the partial derivative of F'; w.r.t. the
rigid motion vector, and I;,, is the spatial image gradient,
all w.r.t. camera i. T ; 1s the concatenation of each camera’s
temporal image gradients.

The solution of F'1,, w.rt. camera 1 is well known and

is [20]

F,y

Ap=0

n
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where z, y and z are the 3D coordinates of the object and f
is the focal length of the camera.

Recalling equations (6) and (10), we may write the im-
age projection in the coordinate system of camera ¢ as
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/!
Pipp = KixC;7 « M+ Cix X,y = g [z,] (16)
where 2/, 3/ and 2’ are the coordinates of the 3D object after
the motion described in equation (11) in the ith camera’s
view, and f; is the focal length of the ith camera. Notice
that the motion M of the cylinder w.r.t. the world coordi-
nate system is captured in equation (16). For camera i,

_|m
= |us
where (z;,)? represents the derivative of 2’ w.r.t. p evaluated
at g = 0 and uy, and vy, are the derivatives of ' and ' w.r.t.
the parameters of p. The form of F';,, comes from the result

of these derivatives. For example, the derivative of the point
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uy = d (") * 2/ — 2’ * (). (19)
dwz dwz

The remaining eleven derivatives are similarly computed.
Therefore, to compute the entries of F'; » ONE needs to com-
pute the derivatives of z’, 3y’ and z’ w.r.t. each parameter of
M and then evaluate each expression at 4 = 0. The re-
maining derivation to obtain the entries of F;, is left to the
reader in lieu of space.

To compute the global Ay, G is formed and equation
(12) is used to compute the result. For single camera track-
ing, the rigid head motion vector Ay is recovered by only
considering camera 1 in the motion calculation.

2.2. Occlusion

In this work, we are concerned with handling two main
types of occlusion. The first type, self-occlusion, is very
common in face tracking tasks. If the pose of the face is
nonfrontal, particularly when the pose is larger than around
+/- 30 degrees in yaw and/or tilt from the frontal pose, pix-
els of the face that have been used for tracking will not be
present and therefore may affect the tracking result greatly.
The second type is full face occlusion, meaning that the en-
tire face is occluded in one or more cameras.

2.2.1 Self-Occlusion

We handle the case of self-occlusion in our tracking model
by weighting a mask that is used in the calculation of the
temporal image gradient for each camera’s image. For a



frontal face pose, the mask is centered on the face and the
most weight is given to the center pixels and the least to pix-
els furthest away from the center using Gaussian weights.
If the pose of the face is nonfrontal, the mask is centered
on the part of the face that is most visible to the camera’s
view. Therefore, pixels that are most visible are weighted
the most in the face tracking calculation and the camera
with the most frontal view of the face will be weighted the
most in our multi-camera tracking method. The weighted
mask is updated for each frame based on pose estimation.

2.2.2 Full Face Occlusions

While the above method is beneficial for tracking the face,
even across face poses that are far from frontal, it is not suf-
ficient for handling partial or full occlusion of the face. Our
method for handling face occlusion relies on multi-camera
tracking. Occlusions of the face are handled by first detect-
ing the occlusion in a particular camera and then removing
that camera from the multi-camera motion calculation.

To determine if a camera is being occluded, we use a
comparison of image histograms approach. First, the un-
wrapped cylinder texture image is taken from the template
(usually the first image in the sequence) and the current
frame. An example template image is found in Figure 2(a),
while a non-occluded current frame and an occluded current
frame are found in Figures 2(b) and 2(c), respectively.

The histograms of the images are formed from the H
channel of the HSV color map of the image and are shown
in Figures 3 and 4.

To measure the similarity of the two histograms (one
from the template image and the other from the current
frame), we employ the Bhattacharyya coefficient [3] , which
is a measure of the amount of overlap between two statisti-
cal samples and is commonly used to measure the similarity
of histograms. Figures 5, 6 and 7 display the Bhattacharyya
coefficients for cameras 1, 2 and 3, respectively. The dashed
line in each of the plots is the threshold value which was de-
termined as two standard deviations from the mean when no
occlusion are present. This threshold, once found, was used
throughout the experiments. From the plots, it is clear that
camera 3 has detected an occlusion.

(a) (b)

Figure 2. Example template, current and occluded frames
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Figure 4. Histogram of template and partially occluded frame

3. Experimental Results

In each of the experiments, the cylinder is initialized
manually by adjusting the size and position of the cylinder
on the face in the first frame of the video sequence and then
adjusting the pose to match the pose of the face. The ro-
tation and translation parameters between the cameras are
then used to refine the initialization so that the cylinder is
initialized in an acceptable position for all cameras.

For these experiments, two video sequences of an indi-
vidual was obtained from three cameras. The first video se-
quence was used to estimate the threshold for detecting oc-
clusion and then towards the end of the sequence an occlu-
sion in camera 3 is presented. In the second video sequence,
an occlusion is presented in camera 2. In our multi-camera
system, camera 1 is the center-most camera, camera 2 is the
right-most camera, and camera 3 is the left-most camera. To
generate ground truth, a checkerboard pattern was placed on
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Figure 5. Bhattacharyya coeff for camera 1
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Figure 6. Bhattacharyya coeff for camera 2

the head of the subject and OpenCV [4] was used to obtain
the rotation vector of the checkerboard in each frame.

Figures 8, 9 and 10 display the results of the yaw for
cameras 1, 2 and 3, while Figures 11, 12 and 13 display the
results of the tilt for cameras 1, 2 and 3, respectively. In
each of the plots, a camera that has lost track of the face
is denoted by a constant value for the pose after the track
is lost. An instance of this is apparent in Figure 13 where
the single camera has lost track of the face in frame number
300. In addition to these results, we will submit the video
sequences of three-camera tracking to visually display the
advantages of our multiple camera method over single cam-
era tracking.

Tables | and 2 display the root mean squared error
(RMS) of the pan and tilt angles comparison between the
single camera (Single), multiple camera (Multi) and oc-
clusion robust multiple camera (MultiOcc) tracking of the
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Figure 7. Bhattacharyya coeff for camera 3

Table 1. RMS error between estimated pose and ground truth for

yaw (degrees)

| Camera || Method [ Sequence 1 || Sequence 2
1 Single 5.28 3.49
Multi 6.52 24.93
MultiOcc | 4.27 4.74
2 Single 13.46 6.67
Multi 6.44 7.78
MultiOcc | 3.89 1.10
3 Single 4.96 6.44
Multi 4.05 24.98
MultiOcc | 3.45 4.66

Table 2. RMS error between estimated pose and ground truth for

tilt (degrees)

| Camera || Method | Sequence 1 [| Sequence 2
1 Single 8.22 3.72
Multi 8.57 6.77
MultiOcc | 8.36 3.42
2 Single 16.43 3.53
Multi 7.95 4.81
MultiOcc | 8.20 3.96
3 Single 18.62 3.13
Multi 7.95 7.36
MultiOcc | 7.99 3.25

multi-camera system. The RMS value was computed for
each camera and method using the least number of frames
that were successfully tracked for all three cameras. For ex-
ample, in sequence 2, camera 2 is unable to track the face
past frame 71. Therefore, only frames 1 through 71 were
used for all three cameras in the RMS calculation. There-
fore, the RMS values unfairly penalize the occlusion robust
multi-camera face tracking method when the single camera
tracking has failed.



4. Discussion

It is clear from the results of the pose estimation plots
and the RMS error of each method with ground truth that
the occlusion robust multi-camera face tracking is far supe-
rior to the single camera method. In both sequences there
is at least one camera that loses track of the face with sin-
gle camera tracking. In sequence 2, even the multi-camera
face tracking method has trouble with the occlusion. It is
important to note that when the multi-camera face tracking
approach fails, it loses track of the face in all three cam-
eras since they are all connected by a single motion cal-
culation. However, by explicitly handling occlusion, the
cameras work together to maintain a robust tracking of the
face in the proposed method. Although our experiments are
shown with three cameras, the methodology may easily be
extended to any number of cameras.

5. Summary and Future Work

A novel approach to handling occlusion in object track-
ing using multiple cameras is proposed. The proposed oc-
clusion robust multi-camera face tracking method has been
shown to be robust to self-occlusion and full face occlu-
sion and significantly outperforms the single camera track-
ing from each of the cameras. Future work on this topic
includes improving the face tracking by including more
cameras in our system, applying the motion model to other
3D shapes and implementing automatic initialization of the
cylinder. We will also investigate other occlusion detection
methods, both for occlusion at the pixel level as well as the
camera level.
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Figure 12. Tilt estimation of tracking sequence 1 from camera 2
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Figure 13. Tilt estimation of tracking sequence 1 from camera 3
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Figure 18. Tilt estimation of tracking sequence 2 from camera 2
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Figure 19. Tilt estimation of tracking sequence 2 from camera 3

40



