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Abstract

Face recognition from video has recently received much
interest. However, several challenges for such a system
exist, such as resolution, occlusion (from objects or self-
occlusion), motion blur, and illumination. The aim of this
paper is to overcome the problem of self-occlusion by ob-
serving a person from multiple cameras with uniquely dif-
ferent views of the person’s face and fusing the recognition
results in a meaningful way. Each camera may only cap-
ture a part of the face, such as the right or left half of the
face. We propose a methodology to use cylinder head mod-
els (CHMs) to track the face of a subject in multiple cam-
eras. The problem of face recognition from video is then
transformed to a still face recognition problem which has
been well studied. The recognition results are fused based
on the extracted pose of the face. For instance, the recog-
nition result from a frontal face should be weighted higher
than the recognition result from a face with a yaw of 30◦.
Eigenfaces is used for still face recognition along with the
average-half-face to reduce the effect of transformation er-
rors. Results of tracking are further aggregated to produce
100% accuracy using video taken from two cameras in our
lab.

1. Introduction

Face recognition from video has received much interest
in recent times. This is likely due to heightened security and
the availability of inexpensive surveillance cameras. Also,
face recognition from video may produce better overall ac-
curacy since a video will have many frames of a subject’s
face instead of just a few examples. Many researchers have
focused on face recognition from a single video camera
[3, 8, 7, 2], but a more realistic surveillance scene would
include video from multiple cameras, such as cameras mon-
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itoring activity in a computer store.
Li et al. [3] use a multi-view face model to automati-

cally fit to a detected face from video. The detected faces
are then warped to the mean shape with the frontal view.
Kernel discriminant analysis (KDA) is then used for recog-
nition. Zhou et al. [8] use a probabilistic model to recog-
nize faces from video using both still images and video as
the gallery. Face recognition from video with occlusions is
considered by Hu et al. [2]. They use a patch-based frame-
work to reconstruct full frontal images for still face recog-
nition. Zhang et al. [7] build 3D face textures from faces
that are present in video.

The focus of this paper is on a scenario where multi-
ple cameras are cooperating to build a more accurate face
recognition system. The cameras are conducting a broad
area surveillance and they focus on a person of interest. In
this scenario, stereo reconstruction of the face would re-
quire calibration of the cameras and would not be profitable
since overlap of the views of the two cameras may be min-
imal. Also, a generic model of the head is desired so that
tracking of different individuals is possible without training
a specific face model. We propose a method to track the
subject using a cylinder head model (CHM) [6] in multi-
ple cameras. One of the advantages of the CHM is that a
cylinder is a close approximation of a 3D head, allowing
for accurate tracking of the face. Knowing the pose from
the CHM allows us to produce a frontal view of face even
though some information from the face might be missing
due to self-occlusion. This tracking result helps to trans-
form the problem of face recognition from video to a still
face recognition task.

Using the pose information and the recognition result,
the classification results of both cameras are fused us-
ing several methods; independent, minimum distance, best
pose, multiplier weights, and Gaussian weights. The min-
imum distance does not use pose information explicitly.
The best pose, multiplier weights and Gaussian weights
use a weighting scheme that gives preference to the face
recognition result from the frontal pose (0◦ yaw) and pe-
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nalizes the result from the maximum pose present in the
video (±70◦yaw in our experiments). The face recogni-
tion method used in this paper is based on eigenfaces [5].
The pose weights are applied to the Euclidean distance be-
tween the test image and closest training image in the sub-
space created by principal components analysis (PCA). This
weighting scheme gives more preference for recognition to
frames where the pose of the face is mostly frontal. By fus-
ing results from multiple cameras, the recognition of faces
is improved from 67.4% to 94.4% in our videos. Face
recognition results from a single subject’s track are further
aggregated to produce 100% accuracy for all subjects.

2. Face Tracking with Cylinder Head Models
In order to translate the problem of face recognition from

video to a still face recognition problem, we desire a method
to robustly track the face of an individual from multiple
cameras so that we may combine the tracking results in
a meaningful way. The cylinder head model (CHM) [6]
has several advantages. First, CHMs are able to recover
the full-motion parameters (3 rotations and 3 translations)
of the head. Since this paper deals with multiple surveil-
lance cameras, the recovery of these parameters is crucial
in order to fuse information about the head and face in all
camera views. In order to keep this paper self-contained, a
summary of the cylinder head model and tracking algorithm
found in [6] follows.

The cylinder head model makes a basic assumption that
we can treat the head (and thus face) as a cylinder. There-
fore, rotation or translation performed by the head can be
estimated by a cylinder with 6 parameters (3 rotations and
3 translations). Let the vector µ represent the rigid motion,
including 3D rotation (θx, θy , θz) and the translation (tx,
ty , tz). If x = (x, y, z)T is a 3D coordinate of a point on
the cylinder surface, then the new location of x after rigid
motion transformation by µ is

M(x,µ) = Rx+ T , (1)

where M is the function of the rigid transformation, R is
the rotation matrix and T is the translation vector. The rigid
motion of the head from time t to time t + 1 is described
by the change in the rigid motion vector, ∆µ. Therefore, if
pt = (u, v) is the projection point in the image plane It of
point x on the cylinder in 3D (which are depicted in Figure
1), then the new location of point pt+1 in the next frame
It+1 is estimated as

pt+1 = G(pt,∆µ) (2)

and the next frame can be computed by

It+1(G(pt,∆µ)) = It(pt), (3)

Figure 1. Relationship between points on the 3D cylinder model
and the image plane.

whereG is the 2D parametric motion function of pt. In this
estimation we assume that the illumination does not change
between frames, so the pixel intensities between the two
frames are consistent.

The change in rigid motion vector ∆µ can be obtained
through a minimization of the error between two successive
image frames and can be solved by using the Lucas-Kanade
image alignment algorithm [4]. The solution is

∆µ = −(
∑
Ω

(IpGµ)T (IpGµ))−1
∑
Ω

(It(IpGµ)) (4)

where Ω is the region of overlapping pixels between the
two frames, Gµ is the partial derivative of G with respect
to the rigid motion vector, and Ip and It are the spatial and
temporal image gradients, respectively.

Assuming that the camera projection matrix depends
only on the focal length, the derivative of G with respect
to the rigid motion vector at µ = 0 is [6]

Gµ

∣∣∣∣
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]
f

z2
,

(5)

where f is the focal length of the camera and x, y and z
are the 3D coordinates. By plugging the result of (5) into
equation (4), the rigid head motion vector ∆µ is recovered.

Using the CHM tracking result, we scan the image to the
cylinder, then unwrap the cylinder to a standard texture map
as portrayed in Figure 2. The pixel value for each point in
the texture image ((d) in Figure 2) is found by locating the
point on the cylinder model ((c) in Figure 2), finding the



Figure 2. Cylinder Tracking Result.

corresponding location on the tracked cylinder ((b) in Fig-
ure 2) and finally estimating the value of the pixel from the
original face image ((a) in Figure 2). In the ideal case of
perfect tracking, the texture map is stabilized from global
motion and produces a frontal face that is centered horizon-
tally in the unwrapped image.

An example tracking result using the CHM is shown in
Figure 3 in which a single person is tracked from two cam-
eras. Each row of the figure represents a single from number
from both cameras. The images in Figures 3(a), 3(e), 3(i)
and 3(m) are from camera A while the images in Figures
3(d), 3(h), 3(l) and 3(p) are from camera B. The image
pairs in the center of Figure 3 are the unwrapped cylinder
images from their corresponding CHM in the original im-
ages.

3. Fusing Face Recognition from Multiple
Cameras

Incorporating the results of multiple cameras viewing a
common subject may increase the accuracy and robustness
of the face recognition task. In this paper, the face recog-
nition results (on a set of full faces or average-half-faces)
of multiple cameras are fused. Since eigenfaces is used
along with NN for the face recognition task, a distance be-
tween the projected testing weights and the projected train-
ing weights is calculated. Let us define camera A as the
camera that views mostly the right half of the face and cam-
era B as the camera that views mostly the left half of the
face. Considering the case of a two-camera system, at ev-
ery time t, there will be a frame from camera A that corre-
sponds to a frame from camera B. Therefore, each frame
will have a minimum distance calculation that will be used
to assign the classification result of the face in each frame.
Also, by using the CHMs to track the face in each frame, an
estimate of the pose of the face (only yaw in our case) is cal-
culated. These two pieces of information (distance to clas-
sified training sample and pose estimation) are used in the
combination of results from multiple cameras. We present

results using 5 different methods for fusing the results be-
tween the two cameras:

1. Independent (Ind). Each face is recognized indepen-
dently as if it was from a single camera, so no combi-
nation of the two cameras is used.

2. Minimum distance (MinDist). Between the two cam-
eras, the camera with the minimum NN distance is
chosen as the classification result.

3. Best pose (BestPose). The camera with the most
frontal pose is used for the classification result.

4. Multiplier weights (MultWts). The NN distance and
pose information of the two cameras are multiplied
along with a constant and the minimum of this new
distance is used for the classification result.

5. Gaussian weights (GaussWts). The pose of each of the
cameras is used to produce a Gaussian weight which
is then applied to the NN result. The minimum of this
result is used for recognition.

The distance from the testing image weights to the nearest
training image weights gives some measure of how close
the two samples are in “face space”. The estimated pose of
the face gives a measure of the ability to recognize the sub-
ject’s face correctly. For instance, a full frontal face should
be easier to classify than a non-frontal face with a yaw of
30◦ or more. Each method of fusing the results requires
a straightforward calculation that may have dramatic accu-
racy gains to the multi-camera face recognition system as
discussed in the experiments section.

A brief description of each of these fusion methods is
presented.

3.1. Independent

This result assumes that there is no information to share
between the two cameras. Each face is recognized on its
own independent of pose or camera location. This is used
as a baseline for the other results.

3.2. Minimum Distance

Since we will get a NN distance calculation for each of
the cameras, the simplest way to fuse the results from the
cameras using only the NN distances and choose the min-
imum of the two for classification. Therefore, the label of
the training image of the camera with the minimum NN dis-
tance is chosen for the recognition result of the two cameras
combined.
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Figure 3. CHM Tracking and Scanning Result on 5 Pairs of Images from the Two Cameras.



3.3. Best Pose

Using only the calculated pose information of each of the
cameras from the CHM model, we can fuse the recognition
results by simply choosing the camera with the most frontal
pose. Therefore, the fused recognition result is the label
applied to the most frontal face image of the two cameras.

3.4. Multiplier Weights

The first attempt to combine both the pose information
and the NN distance from each of the cameras is the sim-
plest. We form a normalized pose from the pose calcula-
tion of cameras A and B (PA and PB , respectively) by di-
viding it by the maximum pose (PnormA = |PA|

max(P ) and

PnormB = |PB |
max(P ) ). Then we multiply the NN distances

from each of the cameras by the normalized poses and use
the minimum result for classification.

3.5. Gaussian Weights

In the final fusing of recognition results between the two
cameras, a Gaussian weighted approach is used. Let dA be
the Euclidean distance between the projected weights from
the face tracked in cameraA to the nearest training sample’s
projected weights and let dB be similarly defined. Let PA
and PB be the estimated pose of the face (where a frontal
face image has a yaw of 0◦) from the CHM calculated from
the frames in camera A and B respectively. Weights wA
andwB are calculated for each pair of frames using the pose
estimations and a Gaussian function as

wA = 1− 1
σ
√

2π
e−(PnormA)2/2σ2

wB = 1− 1
σ
√

2π
e−(PnormB)2/2σ2

(6)

where PnormA = |PA|
max(P ) and PnormB = |PB |

max(P ) ) are
the ratios of estimated poses to the maximum pose, the
mean of the Gaussian was chosen to be zero (frontal pose)
and σ = 0.01, which favors frontal poses and penalizes
poses that are non-frontal. The maximum pose (max(P ))
calculated from our video was 70◦. The calculated weights
are then multiplied to produce new distance measures DA

and DB by

DA = dA ∗ wA
DB = dB ∗ wB .

(7)

The resulting modified distances are then used for clas-
sification. If DA ≤ DB , the training label applied to the
face from camera A is applied to the face in the camera A
and camera B pair. Otherwise the label from camera B is
chosen.

4. Building Confidence by Aggregating Results
One contribution we have made in this paper is to use

face recognition results from several frames of a success-
fully tracked subject to give a better recognition result with
a certain level of confidence. In the videos used in this
paper, each video sequence has only one subject, so the
successful tracking of the face is made simpler. However,
one could imagine a scenario in which several subjects are
tracked in the same video sequence and the tracking results
of each subjects’ faces are successful. The results of the
face recognition on each of the pair of frames of a single
subject’s tracking result using the fused results method ex-
plained in Section 3 are aggregated together. This aggrega-
tion of results is a simple scoring process. For instance, if
100 pairs of frames are labeled as subject 2 and 50 pairs of
frames are labeled as subject 1 in a 150 frame tracking se-
quence, we would label the subject of the track as subject 2
with a confidence of 100/150, or 66.7%. This method gives
intuitively positive results based on the assumption that the
more frames you have of an individual, the more confidently
the correct identification will be applied.

5. Still Face Recognition Method
An oval mask is first applied to a face image that has

been successfully tracked by the CHM so that background
noise is removed for the recognition process. Two examples
of the application of this mask to the face images are found
in Figures 4(a) and 5(a). Once the mask has been applied to
every training and testing image in the database, recognition
of the faces can proceed.

5.1. The Average-Half-Face

The authors in [1] introduce the concept of the average-
half-face (AHF) applied to face recognition. In summary,
the average-half-face is a preprocessing step applied to a
still full face image. The full face must first be centered by
locating the bilateral symmetry axis of the face. Then, com-
puting the average-half-face is equivalent to splitting the
face image into two, flipping one of the images horizontally
and then averaging the two resulting half-faces pixel-wise.

The average-half-face is attractive in this application for
several reasons. It has been shown to be successful along
with eigenfaces for recognition [1], which is the recogni-
tion algorithm this paper is utilizing. The average-half-face
reduces noise and errors from the transformation to the un-
wrapped cylinder image. In some cases the face recognition
accuracy of the system is increased when using the average-
half-face instead of the full face for recognition.

The result of the average-half-face is shown on two ex-
amples from the video sequence of the same subject. The
image in Figures 4 and 5 are from cameras A and B, re-
spectively and correspond to the same frame number in the



(a) Full Face (b) AHF

Figure 4. Average-Half-Face (b) Result of Centered Full Face (a).

(a) Full Face (b) AHF

Figure 5. Average-Half-Face (b) Result of Unaligned Full Face (a).

sequence. The resulting images in Figure 4 appear to be fit
for the recognition task. However, the full face in Figure
5(a) is clearly not desirable. The average-half-face present
in Figure 5(b) is likely a better representation for the recog-
nition task.

5.2. Eigenfaces

Eigenfaces [5] is used for recognition for mainly two rea-
sons. We are interested in transforming the problem of face
recognition from video to a still face recognition problem so
that any still face recognition algorithm can be used. Also,
the implementation of the eigenfaces algorithm is well stud-
ied and needs little discussion.

Nearest-neighbors (NN) is used to classify the test
weights to the nearest training sample using the Euclidean
distance between the weights.

6. Experimental Results
Video sequences taken from two cameras with unique

views of the face are used for the experiments. Each subject
varied the pose of their face in each of the video sequences
by changing the yaw (or pan) from 0◦ to ±70◦. Exam-
ple images from our video sequences are shown in Figure
3. This variation in pose produced around 100 frames per
subject from each of the cameras which were used as test
data. Two frontal images per subject are used for the train-
ing data.

Two face recognition experiments are performed on the
two-camera video sequences. In both experiments, the face
in the video is tracked using CHMs and the estimated pose
is returned for each frame. Eigenfaces is applied to the

Table 1. Face Recognition Results.
Full Orig AHF Orig Full CHM AHF CHM

Ind 72.6% 67.7% 67.4% 68.5%
MinDist 82.2% 78.0% 94.4% 93.5%
BestPose 76.2% 75.2% 91.5% 92.5%
MultWts 75.9% 75.5% 93.5% 94.0%
GaussWts 81.9% 78.3% 94.4% 93.5%

cropped faces tracked in each frame directly in the first ex-
periment. This is used in comparison to our methodology in
the second experiment of using an unwrapped cylinder face
image. In each experiment, the full face and the average-
half-face were used along with the first 12 eigenfaces of
the training data. The Euclidean distance was used as the
distance measure for nearest-neighbor (NN) classification.
These two experiments are used along with the 5 methods
for fusing the recognition results described in Section 3 for
a total of 20 results (5 methods times 2 experiments times 2
sets of images; full face and average-half-face).

The results of the experiments are displayed in Table 1.
The results from the original 2D cropped face images from
the tracking results are displayed first under “Full Orig”
and “AHF Orig”, for the experiments using the full face
and the average-half-face, respectively. The results gath-
ered by using the faces generated by the CHM tracking and
cylinder unwrapping for the full face and the average-half-
face are denoted “Full CHM” and “AHF CHM”. The “Ind”,
“MinDist”, “BestPose”, “MultWts”, and “GaussWts” re-
sults are those generated by fusing the recognition results
from each of the cameras by using the NN distance and/or
pose information as described in Section 3. The highest ac-
curacy reported is 94.4% by using the full face along with
the faces generated by the CHMs and the fused results from
both cameras with methods “MinDist” and “GaussWts”.

As mentioned in Section 4, one can use multiple frames
from a successfully tracked face to build confidence in
the recognition result. In the experiment using the CHM
tracked faces and the fused results (using the GaussWts
method), we achieve 100% accuracy for all subjects with
an average confidence of 93.8% and 95% for the full face
and the average-half-face respectively.

7. Discussion
Clearly, the idea of fusing the recognition results from

both of the cameras is more successful than independently
recognizing the results. This fusing method alone is re-
sponsible for an increase in accuracy of 4% to 25% in our
experiments. Using CHMs to track the face and produce
an unwrapped cylinder face image for recognition has be
shown to outperform the original 2D face captured from the
video frames by almost 20%, but only in the case of fusing
the recognition results. However, to achieve the full face



recognition result of 94.4%, both methods were necessary.
The use of the average-half-face achieved an accuracy of
94.0%, which could be further improved by calculating the
bilateral symmetry axis of the face (a usual step in the com-
putation of the average-half-face). The two most successful
methods for fusing the recognition results between the two
cameras appear to be the minimum distance and Gaussian
weights methods. We suspect that with a larger database,
the minimum distance method alone would tend to produce
a lower accuracy than using the Gaussian weighted method
which uses pose information, but this needs to be tested.
The further step of aggregating recognition results of a sub-
ject that has been successfully tracked in video produces
100% recognition on the all of the subjects tracked in our
video sequences with most confidence levels above 90%. It
is possible that with a faster frame rate and/or longer video
sequences, the confidence of the recognition results could
be further improved. A worthy contribution of the average-
half-face in these results is that it increases the confidence
of the aggregated recognition results.

8. Conclusion

Face recognition from video presents many challenges
such as self-occlusion, occlusion from objects, and illu-
mination changes. We present a method to overcome the
problems of self-occlusion and lack of frontal face images
in video by using CHMs to produce an unwrapped cylin-
der face image and the estimated pose of the face. Using
these outputs we fuse the face recognition results of both
cameras, which results in a dramatic increase in accuracy.
The average-half-face is used to reduce the errors in scan-
ning and unwrapping the CHM to a 2D face image. Eigen-
faces is used for the face recognition task. The proposed
method achieves an accuracy of 94.4%. By further aggre-
gating recognition results from a successfully tracked in-
dividual, a recognition rate of 100% is achieved with high
confidence.

Future work includes improving the CHM tracking so
that initialization using a frontal face is avoided as well as
improving the quality and pose of the unwrapped cylinder
image. Also, improving the tracking method to better find
the middle of the face might lead to more accuracy when
using the average-half-face for the face representation. Per-
haps the use of a 3D mesh model would improve the trans-
formation from a non-frontal pose to a frontal face image,
however, this could require more computation. Generaliz-
ing the fusing method to other face recognition algorithms
is desired. One could also combine the unwrapped images
from the CHMs in each camera in a more direct manner to
reconstruct a full face image for recognition. Further, we
will test the proposed methodology on a large database of
subjects in a multi-camera setting.
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