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ABSTRACT

This paper presents a novel framework for applying semantic
labels to events within a track. A track is a two-dimensional
(2D) or a three-dimensional (3D) signal in time where each
point of the signal is the x and y (and 2) centroid spatial coor-
dinate of an object at a specific frame of the video. The track
may be generated by the movement of a vehicle, person, or
object. In the 2D case, the signal is decomposed into x and y
time series for use in one-dimensional time series segmenta-
tions. Then the results of the two segmentations are combined
to produce a 2D signal segmentation of the track which re-
sults in unique events to be labeled. The Procrustes measure,
from shape analysis, is employed along with template match-
ing to find the most likely trajectory of each individual event.
Once each event is labeled with a semantic description from
the template, we enhance the label using other basic measure-
ments based on the track. The application of our framework
on 4 vehicle tracks from original videos is shown to display
the efficacy of our method.

Index Terms— time series, signal resolution, image
shape analysis, shape measurement

1. INTRODUCTION

Much attention has been paid to methods for identifying
atomic actions of a vehicle (or other object) in a video scene,
such as if a right or left turn has been made. Previous meth-
ods of event labeling have used statistical shape theory and
Autoregressive and Moving Average (ARMA) for activity
recognition [1]. However, little attention has been paid to
trying to semantically describe a more complex vehicle track
or path. Unmanned aerial vehicles (UAV), global positioning
satellite (GPS) tracking devices, and other sensors have the
ability to track vehicles over a long period of time recording
many complex activities. Currently, human operators are
responsible for describing an object’s actions in a complex
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video track. We propose a framework for automatically seg-
menting an object’s track into meaningful events and applying
semantic labels to those events within a given track.

In this paper, we define a track of an object to be a two-
or three-dimensional (2D or 3D) signal in time where each
discrete value of the signal is the x and y (and z) spatial co-
ordinate of the centroid of the object at a specific frame in
a video sequence. Therefore, the framework is not limited
to tracks from a video sequence and can be used on other
datasets where the spatial and temporal coordinates of an ob-
ject are known, such as GPS coordinates.

The objective of the proposed framework is to segment
a track into multiple, meaningful, ‘unique’ events. The Pro-
crustes distance is used to find the best template match for
each segment. A semantic label is then applied to each event,
such as ‘turned right’, ‘straight’, etc. Additionally, since the
spatial and temporal coordinates of the track are assumed to
be known, we can perform other measurements to enhance
the semantic description of each event, such as the distance
traveled and the change in the object’s orientation.

2. TRACK SEGMENTATION

Given a set of spatial and temporal coordinates of an object,
the first step in applying semantic labels to events is to seg-
ment the track into unique events that occur within the track.
In general, one wishes to identify a complete (including every
coordinate of the track) and unique (non-overlapping) seg-
mentation of the track. This segmentation will include spatial
segments, such as maneuvers made by the object, and tempo-
ral segments, such as when the object has stopped moving.

We first identify temporal segments, such as an object
that has stopped movement, by searching for frames where
the z and y positions do not change (or the total change is
less than a predefined €) from one frame to the next. Once
these frames are identified, the = and y points corresponding
to these frames are labeled as ‘stopped’ and the remaining
points are grouped sequentially into one or more tracks for
segmentation and labeling.

Next, track segmentation on the remaining spatial coor-
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Fig. 3. Y time series segmentation.

dinates is performed. For simplification, let us assume that
the coordinates are 2D, such as in the example track of an
object shown in Figure 1. The proposed framework may be
extended to segment and label tracks of 3 spatial dimensions.
Our method is based on decomposing the 2D track into two
one-dimensional (1D) z, and y time signals. The resulting
1D signals are segmented using a time series segmentation
algorithm. Galati and Simaan [2] implemented an algorithm
known as ALESDA (Automatic Least Squares Error Decom-
position Algorithm) which performs an automatic decompo-
sition of time series into step, ramp, and impulse primitives.
Motivated by this work and others, Lemire [3] created an op-
timal dynamic programming solution to the problem of piece-
wise linear time series segmentation. The author proposes an
adaptive time series model that allows the polynomial degree
of each interval to vary. This leads to an algorithm that uses
two parameters to segment the time series optimally. The first

parameter is the maximum degree of the polynomial used in
each interval, which is used in the algorithm as a penalty so
that a lower degree of polynomial is chosen when possible.
The second parameter is the maximum number of segments
which helps to determine the scale of the segmentation. In our
implementation of Lemire’s algorithm, only constant and lin-
ear functions (maximum order of 1) are used. Figures 2 and 3
display the segmented x and y 1D signals obtained from the
example 2D track in Figure 1.

Once each 1D signal has been segmented, we combine the
results to produce a segmentation for the original 2D track.
Our approach is to use a sliding temporal window of size w
(determined by test data) and average the results (starting and
stopping times of each segment) found in both the x and y
segmentations that fall within the window. The final 2D seg-
mentation may be thought of as a smoothed combination of
the x and y time series segmentations and is representative of
the natural segments as seen by human vision.

The result of the 2D track segmentation of the example
track can be seen in Figure 1, where the segmentation of the
track is identified by red squares. As seen from Figure 1,
the 2D track has been appropriately segmented into natural
segments.

3. EVENT LABELING

We now have a 2D track which has been segmented both tem-
porally (stopped events) and spatially. These segments in-
clude the  and y coordinates and the start and stop frames of
each segment.

A template matching scheme is used for labeling the seg-
ments, since we would like to observe and label only a finite
set of atomic events within each track. The atomic events
(and thus labels) include travel straight, turn right, turn left,
u-turn left, u-turn right, change lanes right, change lanes left,
and stopped. Template matching is a flexible method for clas-
sifying events, so more maneuvers may be added to this set
to obtain a finer description of the track behavior. All of the
above atomic events can be described in a purely spatial con-
text (given the correct scaling and time information) except
for ‘stopped’, which has been labeled in the segmentation por-
tion of our framework. Figure 4 displays the templates that
were generated for the experiments in this paper (assuming
2D data where the first frame index is at the origin).

Before performing template matching, we interpolate
each 2D maneuver with a cubic spline. Both the input event
from our segmentation and the template maneuvers are inter-
polated so that one can compare the input maneuver with the
templates using the same number of points.

3.1. Procrustes Distance

Several researchers [1, 4] have used Hidden Markov Models
(HMM), ARMA, and/or shape analysis to characterize and
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Fig. 4. Example template maneuvers.

recognize trajectories of objects. The motivation for using
the Procrustes distance measure in this paper comes from [1],
where the authors applied shape analysis to recognizing group
activity. Other authors have used shape analysis and the Pro-
crustes distance for various recognition activities, such as hu-
man gait [5].

In [6] shape is referred to as “the geometrical information
that remains when location, scale and rotational effects are
filtered out from an object.” In our case, we are represent-
ing shape as a collection of points, or landmarks. Each finite
number of ordered points (such as an input sequence from a
single event) constitutes a shape.

Let U and V be two configuration matrices of size N X 2,
where NV is the number of points, U is the collection of coor-
dinates from the input sequence, and V is the stored template.
The method begins by translating both configuration matrices
so that their centroids are located at the origin. Then each
point is expressed as a complex number with the = coordinate
as the real component and the y coordinate as the imaginary
component. (i.e. our configuration matrix U of size N x 2 be-
comes vector u of size N x 1 complex numbers). We will now
perform 2D Procrustes Analysis, or planar Procrustes Analy-
sis on the resulting vectors. The full Procrustes fit of u onto
vis
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For more information on the derivation and an example,
refer to [6].

This full Procrustes fit allows us to use a metric known
as full Procrustes distance, which calculates the distance be-
tween the configurations in shape space. The full Procrustes
distance between two complex configurations u and v is
given by
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This full Procrustes distance fulfills our comparison met-
ric requirements for template matching since the measure pre-
scales the vectors v and v to unit size based on scale, rotation
and translation [6].

4. ADDITIONAL MEASUREMENTS

Given the spatial coordinates of the track as well as the start
and stop frame indices of each event, several additional mea-
surements can be easily obtained to enhance the label of each
segment of an object’s track. In our experiments, orientation
change (the difference between the starting orientation angle
and ending orientation angle of the event), the distance trav-
eled and the elapsed time of the segment were measured and
reported. Many more measurements, such as velocity and ac-
celeration, can be easily added to the results of our frame-
work.

The orientation change calculation may be useful because
many times the segmentation and labeling will produce sev-
eral consecutive straight paths that, when combined together,
do not describe the path as a whole. Therefore, the orien-
tation change can identify a turn of the vehicle that was not
found during segmentation and labeling. For instance, if an
object travels straight and then quickly turns left, the result
could be an event labeled ‘straight’, an orientation change of
roughly 90 degrees to the left, and then another event labeled
‘straight’.

5. EXPERIMENTS

Our framework is used to segment and semantically label sev-
eral video sequences of varying lengths taken from an over-
head view of a parking lot. The centroid of the vehicle was
labeled in each frame manually, since we assume that the ob-
ject has been successfully tracked. The results of our algo-
rithm applied to four of the tracks are shown in Figures 5 - 8.
As one can see from the plots, the algorithm segmented each
track and applied an appropriate semantic label to each of the
segments. For instance, in Figure 8, our method identified
3 different vehicle turns, 2 different straight segments, and 1
stopped segment. The only misclassification is the ‘change
lanes right’, which should be labeled as ‘straight’. Therefore,
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Table 1. Accuracy of labeled segments in each of the 4 tracks.

we accurately classified 6 of the 7 segments for track 4. The
recognition results on all tracks are displayed in Table 5. The
overall accuracy was found to be 84%. However, even in in-
stances where the framework did not get the semantic label
correct, there is enough information present to correctly iden-
tify the track of the vehicle. This is apparent from Figure
8 where the straight segments have orientation changes that
correspond to the correct track of the object.

6. CONCLUSION

We have developed a framework for applying semantic labels
to track events. The proposed solution divides this problem
into two main subproblems; 2D track segmentation and sin-
gle event labeling. It is shown that our framework provides
successful results on tracking sequences from four original
videos. The current 2D track segmentation method relies on
two parameters which are chosen by hand. Future work on
this problem should include a method for the automatic gen-
eration of these segmentation parameters. We would like to
integrate 3D tracks into our framework for completeness. The
above framework may be integrated with vehicle tracking to
build a complete system for video applications.
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—=—path labeled straight, distance of 216.0602, orientation change of 7.0418 degrees right, , for 4 seconds
—path labeled straight, distance of 122.1475, orientation change of 37.4989 degrees left, , for 4 seconds
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Fig. 5. Algorithm applied to track 1.
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“©path labeled straight, distance of 26.9258, orientation change of 0 degrees left, , for 1 seconds
~¥-path labeled straight, distance of 152.4106, orientation change of 13.1269 degrees right, , for 4 seconds
- path labeled straight, distance of 79.2465, orientation change of 10.1328 degrees left,, for 3 seconds
path labeled changelanes-l, distance of 137.8731, orientation change of 33.7442 degrees left, , for 4 seconds
-O-path labeled changelanes-|, distance of 82.2922, orientation change of 54.2239 degrees left, , for 3 seconds
—=—path labeled straight, distance of 93.0054, orientation change of 16.5571 degrees right, , for 4 seconds

Fig. 6. Algorithm applied to track 2.
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~e—path labeled changelanes-|, distance of 403.005, orientation change of 51.4397 degrees left, , for 6 seconds
—path labeled turn-|, distance of 158.8238, orientation change of 142.0958 degrees left, , for 7 seconds
“©-path labeled straight, distance of 214.0864, orientation change of 4.4206 degrees right, , for 6 seconds
~¥-path labeled turn-|, distance of 108.5587, orientation change of 174.4725 degrees right, , for 7 seconds

- path labeled straight, distance of 390.9284, orientation change of 19.5049 degrees right, , for 9 seconds

Fig. 7. Algorithm applied to track 3.
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path labeled straight, distance of 47.1699, orientation change of 14.804 degrees right, , for 2 seconds
-O-path labeled stopped, distance of 0, orientation change of 0 degrees left,, for 11 seconds

Fig. 8. Algorithm applied to track 4.



