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Human activity recognition is an important area of computer vision research. Its applications
include surveillance systems, patient monitoring systems, and a variety of systems that involve

interactions between persons and electronic devices such as human-computer interfaces. Most

of these applications require an automated recognition of high-level activities, composed of mul-
tiple simple (or atomic) actions of persons. This paper provides a detailed overview of various

state-of-the-art research papers on human activity recognition. We discuss both the methodolo-

gies developed for simple human actions and those for high-level activities. An approach-based
taxonomy is chosen, comparing the advantages and limitations of each approach.

Recognition methodologies for an analysis of simple actions of a single person are first pre-
sented in the paper. Space-time volume approaches and sequential approaches that represent

and recognize activities directly from input images are discussed. Next, hierarchical recognition

methodologies for high-level activities are presented and compared. Statistical approaches, syntac-
tic approaches, and description-based approaches for hierarchical recognition are discussed in the

paper. In addition, we further discuss the papers on the recognition of human-object interactions

and group activities. Public datasets designed for the evaluation of the recognition methodologies
are illustrated in our paper as well, comparing the methodologies’ performances. This review will

provide the impetus for future research in more productive areas.

Categories and Subject Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—motion; I.4.8 [Image Processing]: Scene Analysis; I.5.4 [Pattern Recognition]:

Applications—computer vision

General Terms: Algorithms

Additional Key Words and Phrases: computer vision; human activity recognition; event detection;

activity analysis; video recognition

1. INTRODUCTION

Human activity recognition is an important area of computer vision research today.
The goal of human activity recognition is to automatically analyze ongoing activities
from an unknown video (i.e. a sequence of image frames). In a simple case where a
video is segmented to contain only one execution of a human activity, the objective
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of the system is to correctly classify the video into its activity category. In more
general cases, the continuous recognition of human activities must be performed,
detecting starting and ending times of all occurring activities from an input video.

The ability to recognize complex human activities from videos enables the con-
struction of several important applications. Automated surveillance systems in pub-
lic places like airports and subway stations require detection of abnormal and sus-
picious activities as opposed to normal activities. For instance, an airport surveil-
lance system must be able to automatically recognize suspicious activities like ‘a
person leaving a bag’ or ‘a person placing his/her bag in a trash bin’. Recogni-
tion of human activities also enables the real-time monitoring of patients, children,
and elderly persons. The construction of gesture-based human computer interfaces
and vision-based intelligent environments becomes possible as well with an activity
recognition system.

There are various types of human activities. Depending on their complexity, we
conceptually categorize human activities into four different levels: gestures, actions,
interactions, and group activities. Gestures are elementary movements of a person’s
body part, and are the atomic components describing the meaningful motion of a
person. ‘Stretching an arm’ and ‘raising a leg’ are good examples of gestures.
Actions are single person activities that may be composed of multiple gestures
organized temporally, such as ‘walking’, ‘waving’, and ‘punching’. Interactions are
human activities that involve two or more persons and/or objects. For example,
‘two persons fighting’ is an interaction between two humans and ‘a person stealing a
suitcase from another’ is a human-object interaction involving two humans and one
object. Finally, group activities are the activities performed by conceptual groups
composed of multiple persons and/or objects. ‘A group of persons marching’, ‘a
group having a meeting’, and ‘two groups fighting’ are typical examples of them.

The objective of this paper is to provide a complete overview of state-of-the-art
human activity recognition methodologies. We discuss various types of approaches
designed for the recognition of different levels of activities. The previous review
written by Aggarwal and Cai [1999] has covered several essential low-level compo-
nents for the understanding of human motion, such as tracking and body posture
analysis. However, the motion analysis methodologies themselves were insufficient
to describe and annotate ongoing human activities with complex structures, and
most of approaches in 1990s focused on the recognition of gestures and simple
actions. In this new review, we concentrates on high-level activity recognition
methodologies designed for the analysis of human actions, interactions, and group
activities, discussing recent research trends in activity recognition.

Figure 1 illustrates an overview of the tree-structured taxonomy that our review
follows. We have chosen an approach-based taxonomy. All activity recognition
methodologies are first classified into two categories: single-layered approaches and
hierarchical approaches. Single-layered approaches are approaches that represent
and recognize human activities directly based on sequences of images. Due to their
nature, single-layered approaches are suitable for the recognition of gestures and
actions with sequential characteristics. On the other hand, hierarchical approaches
represent high-level human activities by describing them in terms of other simpler
activities, which they generally call sub-events. Recognition systems composed of
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Fig. 1. The hierarchical approach-based taxonomy of this review.

multiple layers are constructed, making them suitable for the analysis of complex
activities.

Single-layered approaches are again classified into two types depending on how
they model human activities: space-time approaches and sequential approaches.
Space-time approaches view an input video as a 3-dimensional (XYT) volume while
sequential approaches interpret it as a sequence of observations. Space-time ap-
proaches are further divided into three categories based on what features they use
from the 3-D space-time volumes: volumes themselves, trajectories, or local interest
point descriptors. Sequential approaches are classified depending on whether they
use exemplar-based recognition methodologies or model-based recognition method-
ologies. Figure 2 shows a detailed taxonomy used for single-layered approaches
covered in the review, together with a number of publications corresponding to
each category.

Hierarchical approaches are classified based on the recognition methodologies
they use: statistical approaches, syntactic approaches, and description-based ap-
proaches. Statistical approaches construct statistical state-based models concate-
nated hierarchically (e.g. layered hidden Markov models) to represent and recognize
high-level human activities. Similarly, syntactic approaches use a grammar syntax
such as stochastic context-free grammar (SCFG) to model sequential activities. Es-
sentially, they are modeling a high-level activity as a string of atomic-level activities.
Description-based approaches represent human activities by describing sub-events
of the activities and their temporal, spatial, and logical structures. Figure 3 presents
lists of representative publications corresponding to categories.

In addition, in Figures 2 and 3, we have indicated previous works that recognize
human-object interactions and group activities by using different colors and by at-
taching ‘O’ (object) and ‘G’ (group) tags to the right-hand side. The recognition of
human-object interactions requires the analysis of interplays between object recog-
nition and activity analysis. This paper provides a survey on the methodologies
focusing on the analysis of such interplays for the improved recognition of human
activities. Similarly, the recognition of groups and the analysis of their structures
is necessary for group activity detection, and we cover them as well in this review.

This review paper is organized as follows: Section 2 covers single-layered ap-
proaches. In Section 3, we review hierarchical recognition approaches for the anal-
ysis of high-level activities. Subsection 4.1 discusses recognition methodologies for
interactions between humans and objects, while especially concentrating on how
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previous works handled interplays between object recognition and motion analysis.
Subsection 4.2 presents works on group activity recognition. In Subsection 5.1, we
review public datasets available and compare systems tested on them. In addition,
Subsection 5.2 covers real-time systems for human activity recognition. Section 6
concludes the paper.

1.1 Comparison with previous review papers

There have been other related surveys on human activity recognition. Several pre-
vious reviews on human motion analysis [Cedras and Shah 1995; Gavrila 1999;
Aggarwal and Cai 1999] discussed human action recognition approaches as a part
of their review. Kruger et al. [2007] reviewed human action recognition approaches
while classifying them based on the complexity of features involved in the action
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recognition process. Their review especially focused on the planning aspect of hu-
man action recognitions, considering their potential application to robotics. Turaga
et al. [2008]’s survey covered human activity recognition approaches, similar to ours.
In their paper, approaches are first categorized based on the complexity of the ac-
tivities that they want to recognize, and then classified in terms of the recognition
methodologies they use.

However, most of the previous reviews have focused on the introduction and
summarization of activity recognition methodologies, and are lacking in the aspect
of comparing different types of human activity recognition approaches. In this re-
view, we present inter-class and intra-class comparisons between approaches, while
providing an overview of human activity recognition approaches categorized based
on the approach-based taxonomy presented above. Comparisons among abilities
of recognition methodologies are essential for one to take advantage of them. Our
goal is to enable a reader (even who is from a different field) to understand the
context of human activity recognition’s developments, and comprehend advantages
and disadvantages of different approach categories.

We use a more elaborate taxonomy and compare and contrast each approach
category in detail. For example, differences between single-layered approaches and
hierarchical approaches are discussed in the highest-level of our review, while space-
time approaches are compared with sequential approaches in an intermediate level.
We present a comparison among abilities of previous systems within each class as
well, pointing out what they are able to recognize and what they are not. Further-
more, our review covers recognition methodologies for complex human activities
including human-object interactions and group activities, which previous reviews
have not focused on. Finally, we discuss the public datasets used by the systems,
and compare the recognition methodologies’ performances on the datasets.

2. SINGLE-LAYERED APPROACHES

Single-layered approaches recognize human activities directly from video data. These
approaches consider an activity as a particular class of image sequences, and recog-
nize the activity from an unknown image sequence (i.e. an input) by categorizing
it into its class. Various representation methodologies and matching algorithms
have been developed to enable the recognition system to make an accurate deci-
sion whether an image sequence belongs to a certain activity class or not. For the
recognition from continuous videos, most single-layered approaches have adopted a
sliding windows technique that classifies all possible sub-sequences. Single-layered
approaches are most effective when a particular sequential pattern describing an
activity can be captured from training sequences. Due to their nature, the main
objective of the single-layered approaches has been to analyze relatively simple (and
short) sequential movements of humans, such as walking, jumping, and waving.

In this review, we categorize single-layered approaches into two classes: space-
time approaches and sequential approaches. Space-time approaches model a human
activity as a particular 3-D volume in a space-time dimension or a set of features
extracted from the volume. The video volumes are constructed by concatenating
image frames along a time axis, and are compared to measure their similarities.
On the other hand, sequential approaches treat a human activity as a sequence
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T T

(a) (b)

Fig. 4. Example XYT volumes constructed by concatenating (a) entire images and (b) foreground
blob images obtained from a ‘punching’ sequence.

of particular observations. More specifically, they represent a human activity as
a sequence of feature vectors extracted from images, and recognize activities by
searching for such sequence. We discuss space-time approaches in Subsection 2.1,
and compare sequential approaches in Subsection 2.2.

2.1 Space-time approaches

An image is 2-dimensional data formulated by projecting a 3-D real-world scene,
and it contains spatial configurations (e.g. shapes and appearances) of humans and
objects. A video is a sequence of those 2-D images placed in chronological order.
Therefore, a video input containing an execution of an activity can be represented
as a particular 3-D XYT space-time volume constructed by concatenating 2-D (XY)
images along time (T).

Space-time approaches are approaches that recognize human activities by ana-
lyzing space-time volumes of activity videos. A typical space-time approach for
human activity recognition is as follows. Based on the training videos, the system
constructs a model 3-D XYT space-time volume representing each activity. When
an unlabeled video is provided, the system constructs a 3-D space-time volume cor-
responding to the new video. The new 3-D volume is compared with each activity
model (i.e. template volume) to measure the similarity in shape and appearance be-
tween the two volumes. The system finally deduces that the new video corresponds
to the activity which has the highest similarity. This example can be viewed as a
typical space-time methodology using the ‘3-D space-time volume’ representation
and the ‘template matching’ algorithm for the recognition. Figure 4 shows example
3-D XYT volumes corresponding to a human action of ‘punching’.

In addition to the pure 3-D volume representation, there are several variations
of the space-time representation. First, the system may represent an activity as
trajectories (instead of a volume) in a space-time dimension or other dimensions.
If the system is able to track feature points such as estimated joint positions of
a human, the movements of the person performing an activity can be represented
more explicitly as a set of trajectories. Secondly, instead of representing an activity
with a volume or a trajectory, the system may represent an action as a set of features
extracted from the volume or the trajectory. 3-D volumes can be viewed as rigid
objects, and extracting common patterns from them enables their representations.
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Researchers have also focused on developing various recognition algorithms using
space-time representations to correctly match volumes, trajectories, or their fea-
tures. We already have seen a typical example of an approach using a template
matching, which constructs a representative model (i.e. a volume) per action using
training data. Activity recognition is done by matching the model with the volume
constructed from inputs. Neighbor-based matching algorithms (i.e. discriminative
methods) have also been applied widely. In the case of neighbor-based matching,
the system maintains a set of sample volumes (or trajectories) to describe an activ-
ity. The recognition is performed by matching the input with all (or a portion) of
them. Finally, statistical modeling algorithms have been developed, which match
videos by explicitly modeling a probability distribution of an activity.

Accordingly, we have classified space-time approaches into several categories. A
representation-based taxonomy and a recognition-based taxonomy have been jointly
applied for the classification. That is, each of the activity recognition publications
with space-time approaches are assigned to a slot corresponding to a specific (rep-
resentation, recognition) pair. The left part of Figure 2 shows a detailed hierarchy
tree of space-time approaches.

2.1.1 Action recognition with space-time volumes. The core of the recognition
using space-time volumes is in the similarity measurement between two volumes.
The system must be able to compute how similar humans’ movements described in
two volumes are. In order to calculate the correct similarities, various types of space-
time volume representations and recognition methodologies have been developed.
Instead of concatenating entire images along time, some approaches only stack
foreground regions of a person (i.e. silhouettes) to track shape changes explicitly
[Bobick and Davis 2001]. An approach to compare volumes in terms of their patches
has been proposed as well [Shechtman and Irani 2005]. Ke et al. [2007] used over-
segmented volumes, automatically calculating a set of 3-D XYT volume segments
that corresponds to a moving human. Rodriguez et al. [2008] generated filters
capturing characteristics of volumes, in order to match volumes more reliably and
efficiently. In this subsection, we cover each of these approaches while focusing on
our taxonomy of ‘what types of space-time volume they use’ and ‘how they match
volumes to recognize activities’.

Bobick and Davis [2001] constructed a real-time action recognition system using
template matching. Instead of maintaining the 3-dimensional space-time volume
of each action, they have represented each action with a template composed of two
2-dimensional images: a 2-dimensional binary motion-energy image (MEI) and a
scalar-valued motion-history image (MHI). The two images are constructed from a
sequence of foreground images, which essentially are weighted 2-D (XY) projections
of the original 3-D XYT space-time volume. By applying a traditional template
matching technique to a pair of (MEI, MHI), their system was able to recognize
simple actions like sitting, arm waving, and crouching. Further, their real-time
system has been applied to the interactive play environment of children called
‘Kids-Room’. Figure 5 shows example MHIs.

Shechtman and Irani [2005] have estimated motion flows from a 3-D space-time
volume to recognize human actions. They have computed a 3-D space-time video-
template correlation, measuring the similarity between an observed video volume

ACM Journal Name, Vol. V, No. N, Month 20YY.



8 · J. K. Aggarwal and M. S. Ryoo

Fig. 5. Examples of space-time action representation: motion-history images from [Bobick and
Davis 2001] ( c©2001 IEEE). This representation can be viewed as an weighted projection of a 3-D

XYT volume into 2-D XY dimension.

and maintained template volumes. Their similarity measurement can be viewed as
a hierarchical space-time volume correlation. At every location of the volume (i.e.
(x, y, t)), they extracted a small space-time patch around the location. Each volume
patch captures the flow of a particular local motion, and the correlation between a
patch in a template and a patch in video at the same location gives a local match
score to the system. By aggregating these scores, the overall correlation between
the template volume and a video volume is computed. When an unknown video is
given, their system searches for all possible 3-D volume segments centered at every
(x, y, t) that best matches with the template (i.e. sliding windows). Their system
was able to recognize various types of human actions, including ballet movements,
pool dives, and waving.

Ke et al. [2007] used segmented spatio-temporal volumes to model human ac-
tivities. Their system applies a hierarchical meanshift to cluster similarly colored
voxels, and obtains several segmented volumes. The motivation is to find the actor
volume segments automatically, and measure their similarity to the action model.
Recognition is done by searching for a subset of over-segmented spatio-temporal
volumes that best matches the shape of the action model. Support vector machines
(SVM) have been applied to recognize human actions while considering both shapes
and flows of the volumes. As a result, their system recognized simple actions such
as hand waving and boxing from the KTH action database [Schuldt et al. 2004] as
well as tennis plays in TV broadcast videos with more complex backgrounds.
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Rodriguez et al. [2008] have analyzed 3-D space-time volumes by synthesizing
filters: They adopted the maximum average correlation height (MACH) filters that
have been used for an analysis of images (e.g. object recognition), to solve the
action recognition problem. That is, they have generalized the traditional 2-D
MACH filter for 3-D XYT volumes. For each action class, one synthesized filter
that fits the observed volume is generated, and the action classification is performed
by applying the synthesized action MACH filter and analyzing its response on the
new observation. They have further extended the MACH filters to analyze vector-
valued data using the Clifford Fourier transform. They not only have tested their
system on the existing KTH dataset and the Weizmann dataset [Blank et al. 2005],
but also on their own dataset constructed by gathering clips from movie scenes.
Actions such as ‘kissing’ and ‘hitting’ have been recognized.

Table I compares the abilities of the space-time volume-based action recogni-
tion approaches. The major disadvantage of space-time volume approaches is the
difficulty in recognizing actions when multiple persons are present in the scene.
Most of the approaches apply the traditional sliding window algorithm to solve this
problem. However, this requires a large amount of computations for the accurate
localization of actions. Furthermore, they have difficulty recognizing actions which
cannot be spatially segmented.

2.1.2 Action recognition with space-time trajectories. Trajectory-based approaches
are recognition approaches that interpret an activity as a set of space-time trajec-
tories. In trajectory-based approaches, a person is generally represented as a set of
2-dimensional (XY) or 3-dimensional (XYZ) points corresponding to his/her joint
positions. Human body part estimation methodologies, especially the stick figure
modeling, have widely been used to extract the joint positions of a person at each
image frame. As a human performs an action, his/her joint position changes are
recorded as space-time trajectories, constructing 3-D XYT or 4-D XYZT represen-
tations of the action. Figure 6 shows example trajectories. The early work done
by Johansson [1975] suggested that the tracking of joint positions itself is suffi-
cient for humans to distinguish actions, and this paradigm has been studied for the
recognition of activities in depth [Webb and Aggarwal 1982; Niyogi and Adelson
1994].

Several approaches used the trajectories themselves (i.e. sets of 3-D points)
to represent and recognize actions directly [Sheikh et al. 2005; Yilmaz and Shah
2005b]. Sheikh et al. [2005] represented an action as a set of 13 joint trajectories
in a 4-D XYZT space. They have used an affine projection to obtain normalized
XYT trajectories of an action, in order to measure the view-invariant similarity
between two sets of trajectories. Yilmaz and Shah [2005b] presented a methodology
to compare action videos obtained from moving cameras, also using a set of 4-D
XYZT joint trajectories.

Campbell and Bobick [1995] recognized human actions by representing them as
curves in low-dimensional phase spaces. In order to track joint positions, they took
advantage of 3-D body-part models of a person. Based on the 3-D XYZ models
estimated for each frame, they have defined body phase space as a space where
each axis represents an independent parameter of the body (e.g. ankle-angle or
knee-angle) or its first derivative. In their phase space, a person’s static state at
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(a) (b)

Fig. 6. An example trajectories of human joint positions when performing a human action ‘walking’

[Sheikh et al. 2005] ( c©2005 IEEE). Figure (a) shows trajectories in XYZ space, and (b) shows

those in XYT space.

each frame corresponds to a point and an action corresponds to a set of points
(i.e. curve). They have projected the curve in the phase space into multiple 2-D
subspaces, and maintained the projected curves to represent the action. Each curve
is modeled to have a cubic polynomial form, indicating that they assume the actions
to be relatively simple in the projected subspace. Among all possible curves of 2-D
subspaces, their system automatically selects the top k stable and reliable ones to
be used for the recognition process.

Once an action representation, a set of projected curves, has been constructed,
Campbell and Bobick recognized the action by converting an unseen video also into
a set of points in the phase space. Without explicitly analyzing the dynamics of the
points from the unseen video, their system simply verifies whether the points are on
the maintained curves (i.e. trajectories in the subspaces) when projected. Various
types of basic ballet movements have been recognized successfully with markers
attached to a subject to track joint positions.

Instead of maintaining trajectories to represent human actions, Rao and Shah
[2001]’s methodology extracts meaningful curvature patterns from the trajectories.
They have tracked the position of a hand in 2-D image space using the skin pixel de-
tection, obtaining a 3-D XYT space-time curve. Their system extracts the positions
of peaks of trajectory curves, representing an action as a set of peaks and inter-
vals between them. They have verified that these peak features are view-invariant.
Automated learning of the human actions is possible for their system, incremen-
tally constructing several action prototypes as representations of human actions.
These prototypes can be considered action templates, and the overall recognition
process can be regarded as a template matching process. As a result, by analyzing
peaks of trajectories, their system was able to recognize human actions in an office
environment such as ‘opening a cabinet’ and ‘picking up an object’.

Again, Table I compares the trajectory-based approaches. The major advan-
tage of the trajectory-based approaches is their ability to analyze detailed levels of
human movements. Furthermore, most of these methods are view invariant. How-
ever, in order to do so, they generally require a strong low-level component which
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is able to correctly estimate the 3-D XYZ joint locations of persons appearing in a
scene. The problem of the 3-D body-part detection and tracking is still an unsolved
problem, and researchers are actively working in this area.

2.1.3 Action recognition using space-time local features. The approaches dis-
cussed in this subsection are approaches using local features extracted from 3-
dimensional space-time volumes to represent and recognize activities. The motiva-
tion behind these approaches is in the fact that a 3-D space-time volume essentially
is a rigid 3-D object. This implies that if a system is able to extract appropriate
features describing characteristics of each action’s 3-D volumes, the action can be
recognized by solving an object matching problem.

In this subsection, we discuss each of the approaches using 3-D space-time fea-
tures, while especially focusing on three aspects: what 3-D local features the ap-
proaches extract, how they represent an activity in terms of the extracted features,
and what methodology they use to classify activities. In general, we are able to
describe the activity recognition approaches using local features by presenting the
above three components. Similar to the object recognition process, the system first
extracts specific local features that have been designed to capture the local motion
information of a person from a 3-D space-time volume. These features are then
combined to represent the activities while considering their spatio-temporal rela-
tionships or ignoring their relations. Finally, recognition algorithms are applied to
classify the activities.

We use the terminology ‘local features’, ‘local descriptors’, and ‘interest points’
interchangeably, similar to the case of object recognition problems. Several ap-
proaches extract these local features at every frame and concatenate them tempo-
rally to describe the overall motion of human activities [Chomat and Crowley 1999;
Zelnik-Manor and Irani 2001; Blank et al. 2005]. The other approaches extract
sparse spatio-temporal local interest points from 3-D volumes [Laptev and Linde-
berg 2003; Dollar et al. 2005; Niebles et al. 2006; Yilmaz and Shah 2005a; Ryoo
and Aggarwal 2009b]. Example 3-D local interest points are illustrated in Figure
7. These features have been particularly popular because of their reliability under
noise, camera jitter, illumination changes, and background movements.

Chomat and Crowley [1999] proposed an idea of using local appearance descrip-
tors to characterize an action, thereby enabling the action classification. Motion
energy receptive fields together with Gabor filters are used to capture motion in-
formation from a sequence of images. More specifically, local spatio-temporal ap-
pearance features describing motion orientations are detected per frame. Multi-
dimensional histograms are constructed based on the detected local features, and
the posterior probability of an action occurring given the detected features is cal-
culated by applying the Bayes rule to the histograms. Their system first calculates
the local probability of an activity occurring at each pixel location, and integrates
them for the final recognition of the actions. Even though only simple gestures such
as ‘come’, ‘go’, ‘left’, and ‘right’ are recognized due to the simplicity of their motion
descriptors, they have shown that local appearance detectors may be utilized for
the recognition of human activities.

Zelnik-Manor and Irani [2001] proposed an approach utilizing local spatio-temporal
features at multiple temporal scales. Multiple temporally scaled video volumes are
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analyzed to handle execution speed variations of an action. For each point in a 3-D
XYT volume, their system estimates a normalized local intensity gradient. Similar
to [Chomat and Crowley 1999], they have computed a histogram of these space-time
gradient features per video, and presented a histogram-based distance measurement
ignoring the positions of the extracted features. An unsupervised clustering algo-
rithm has been applied to these histograms to learn actions, and human activities
including outdoor sports video sequences like basketball and tennis plays have been
automatically recognized.

Similarly, Blank et al. [2005] also calculated local features at each frame. In-
stead of utilizing optical flows for the calculation of local features, they calculated
appearance-based local features at each pixel by constructing a space-time vol-
ume whose pixel values are solutions to the Poisson equation. The solution to the
Poisson equation has proved to be able to extract a wide variety of useful local
shape properties, and their system has extracted local features capturing space-
time saliency and space-time orientation using the equation. Each sequence of an
action is represented as a set of global features, which are the weighted moments
of the local features. They have applied a simple nearest neighbor classification
with a Euclidean distance to recognize the actions. Simple actions such as ‘walk-
ing’, ‘jumping’, and ‘bending’ in their Weizmann dataset as well as basic ballet
movements have been recognized successfully.

On the other hands, there are approaches extracting sparse local features from
video volumes to represent activities. Laptev and Lindeberg [2003] recognized hu-
man actions by extracting sparse spatio-temporal interest points from videos. They
have extended the previous local feature detectors [Harris and Stephens 1988] com-
monly used for object recognition, in order to detect interest points in a space-time
volume. This scale-invariant interest point detector searches for spatio-temporal
corners in a 3-dimensional space (XYT), which captures various types of non-
constant motion patterns. Motion patterns such as a direction change of an object,
splitting and merging of an image structure, and/or collision and bouncing of ob-
jects, are detected as a result (Figure 7 (a) and (b)). In their work, these features
have been used to distinguish a walking person from complex backgrounds. Fur-
thermore, Schuldt et al. [2004] classified multiple actions by applying SVMs to
Laptev and Lindeberg [2003]’s features, illustrating their applicability for the ac-
tivity recognition. A new database called ‘KTH actions dataset’ containing action
videos (e.g. ‘jogging’ and ‘hand waving’) was introduced, and has been widely
adopted. We discuss more about this dataset in Subsection 5.1.1.

This paradigm of recognizing actions by extracting sparse local interest points
from a 3-dimensional space-time volume has been adopted by several researchers.
They have focused on the fact that sparse local features characterizing local motion
are sufficient to represent actions, as [Laptev and Lindeberg 2003] have suggested.
These approaches are particularly motivated by the success of the object recognition
methodologies using sparse local appearance features, such as SIFT descriptors
[Lowe 1999]. Instead of extracting features at every frame, these approaches extract
features only when there exists a salient appearance or shape change in 3-D space-
time volume. Most of these features have been verified to be invariant to scale,
rotation, and translations, similar to object recognition descriptors.
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(c)(a) (b)

Fig. 7. Example 3-D space-time local features extracted from a video of a human action ‘walking’
[Laptev and Lindeberg 2003] ( c©2003 IEEE), and those from a mouse movement video [Dollar et

al. 2005] ( c©2005 IEEE). Figure (a) shows a concatenated XYT surfaces of legs of a person and

detected interest points using [Laptev and Lindeberg 2003]. Figure (b) shows the same interest
points placed on a sequence of original images. Figure (c) shows cuboid features extracted using

[Dollar et al. 2005].

Dollar et al. [2005] proposed a new spatio-temporal feature detector for the recog-
nition of human (and animal) actions. Their detector is especially designed to ex-
tract space-time points with local periodic motions, obtaining a sparse distribution
of interest points from a video. Once detected, their system associates a small 3-D
volume called cuboid to each interest point (Figure 7 (c)). Each cuboid captures
pixel appearance values of the interest point’s neighborhoods. They have tested
various transformations to be applied to cuboids to extract final local features,
and have chosen the flattened vector of brightness gradients that shows the best
performance. A library of cuboid prototypes is constructed per each dataset by
clustering cuboid appearances with k-means. As a result, each action is modeled as
a histogram of cuboid types detected in 3-D space-time volume while ignoring their
locations (i.e. bag-of-words paradigm). They have recognized facial expressions,
mouse behaviors, and human activities (i.e. the KTH dataset) using their method.

Niebles et al. [2006][Niebles et al. 2008] presented an unsupervised learning and
classification method for human actions using the above-mentioned feature extrac-
tor [Dollar et al. 2005]. Their recognition method is a generative approach, modeling
an action class as a collection of spatio-temporal feature appearances. A probabilis-
tic Latent Semantic Analysis (pLSA) commonly used in the field of text mining has
been applied to recognize actions statistically. Each feature in the scene is catego-
rized into an action class by calculating its posterior probability of being generated
by the action. As a result, they were able to recognize simple actions from public
datasets [Schuldt et al. 2004; Blank et al. 2005] as well as figure skating actions.

In this context, various spatio-temporal feature extractors have been developed
recently. Yilmaz and Shah [2005a] proposed an action recognition approach to
extract sparse features called action sketches from a 3-D contour concatenation,
which have been confirmed to be view-invariant. Scovanner et al. [2007] designed
the 3-D version of the SIFT descriptor, similar to the cuboid features [Dollar et al.
2005]. Liu et al. [2009] presented a methodology to prune cuboid features to choose
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important and meaningful features. Bregonzio et al. [2009] proposed an improved
detector for extracting cuboid features, and presented a feature selection method
similar to [Liu et al. 2009]. Rapantzikos et al. [2009] extended the cuboid features
to utilized color and motion information as well, in contrast to previous features
only using intensities (e.g. [Laptev and Lindeberg 2003; Dollar et al. 2005]).

In most approaches using sparse local features, spatial and temporal relationships
among detected interest points are ignored. The approaches that we have discussed
above have shown that simple actions can successfully be recognized even without
any spatial and temporal information among features. This is similar to the suc-
cess of object recognition techniques ignoring local features’ spatial relationships,
typically called as bag-of-words. The bag-of-words approaches were particularly
successful for simple periodic actions.

Recently, action recognition approaches considering spatial configurations among
the local features are getting an increasing amount of interests. Unlike the ap-
proaches following the bag-of-words paradigm, these approaches attempt to model
spatio-temporal distribution of the extracted features for better recognition of ac-
tions. Wong et al. [2007] extended the basic pLSA, constructing a pLSA with an
implicit shape model (pLSA-ISM). In contrast to the pLSA used by [Niebles et al.
2006], their pLSA-ISM captures the relative spatio-temporal location information
of the features from the activity center, successfully recognizing and localizing ac-
tivities in the KTH dataset.

Savarese et al. [2008] proposed a methodology to capture spatio-temporal prox-
imity information among features. For each action video, they have measured
feature co-occurrence patterns in a local 3-D region, constructing histograms called
ST-correlograms. Liu and Shah [2008] also considered correlations among features.
Similarly, Laptev et al. [2008] constructed spatio-temporal histograms by dividing
an entire space-time volume into several grids. The method roughly measures how
local descriptors are distributed in the 3-D XYT space, by analyzing which feature
falls into which grid. Both methods have been tested on the KTH dataset as well,
obtaining successful recognition results. Notably, similar to [Rodriguez et al. 2008],
[Laptev et al. 2008] has been tested on realistic videos obtained from various movie
scenes.

Ryoo and Aggarwal [2009b] introduced the spatio-temporal relationship match
(STR match), which explicitly considers spatial and temporal relationships among
detected features to recognize activities. Their method measures structural simi-
larity between two videos by computing pair-wise spatio-temporal relations among
local features (e.g. before and during), enabling the detection and localization of
complex-structured activities. Their system not only classified simple actions (i.e.
those from the KTH datasets), but also recognized interaction-level activities (e.g.
hand shaking and pushing) from continuous videos.

The space-time approaches extracting local descriptors have several advantages.
By its nature, background subtraction or other low-level components are generally
not required, and the local features are scale, rotation, and translation invariant in
most cases. They were particularly suitable for recognizing simple periodic actions
such as ‘walking’ and ‘waving’, since periodic actions will generate feature patterns
repeatedly.
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Approach 
Type Authors Required low-

levels
Structural 

consideration
Scale 

invariant Localization View 
invariant

Multiple 
activities

Bobick and J. Davis ’01 Background Volume-
based

Templates 
needed √

Ke et al. ’07 None Volume-
based

Templates 
needed √

Shuldt et al. ’04 None √

Dollar et al. ’05 None √

Liu and Shah ’08 None Co-occur 
only √

Laptev et al. ’08 None Grid-based √

Space-time 
features

√

√

√

√

∆

Wong et al. ’07 None √ √ √

Savarese et al. ’08 None Proximity-
based √ √ √

Shechtman and Irani ’05 None Volume-
based

Scaling 
required √

Rodriguez et al. ’08 None Volume-
based √ √

Campbell and Bobick ’95 Body-part 
estimation √ √

Rao and Shah ’01 Skin detection Ordering only √ √

Sheikh et al. ’05 Body-part 
estimation Ordering only √ √

Chomat and Crowley ’99 None √ √

Zalnik-Manor and Irani ’01 None √

Laptev and Lindeberg ’03 None √ √

Yilmaz and Shah ’05a Background Ordering only √ √

Blank et al. ’05 Background √ √

Niebles et al. ’06 None √ √ √

Ryoo and Aggarwal ’09b None √ √ √ √

Space-time 
trajectories

Space-time 
volume

Table I. A table comparing the abilities of the important space-time approaches. The column

‘required low-levels’ specifies the low-level components necessary for the approach to be applica-
ble. ‘Structural consideration’ shows temporal patterns the approach is able to capture. ‘Scale

invariant’ and ‘view invariant’ columns describe whether the approaches are invariant to scale
and view changes in videos, and ‘localization’ indicates the ability to correctly locate where the
activity is occurring spatially and temporally. ‘Multiple activities’ indicates that the system is
designed to consider multiple activities in the same scene.

2.1.4 Comparison. Table I compares the abilities of the space-time approaches
reviewed in this paper. Space-time approaches are suitable for recognition of peri-
odic actions and gestures, and many have been tested on public datasets (e.g. the
KTH dataset [Schuldt et al. 2004] and the Weizmann dataset [Blank et al. 2005]).
Basic approaches using space-time volumes provide a straight-forward solution, but
often have difficulties handling speed and motion variations inherently. Recognition
approaches using space-time trajectories are able to perform detailed-level analy-
sis and are view-invariant in most cases. However, 3-D modeling of body parts

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 · J. K. Aggarwal and M. S. Ryoo

from videos, which still is an unsolved problem, is required for a trajectory-based
approach to be applied.

The spatio-temporal local feature-based approaches are getting an increasing
amount of attention because of their reliability under noise and illumination changes.
Furthermore, some approaches [Niebles et al. 2006; Ryoo and Aggarwal 2009b] are
able to recognize multiple activities without background subtraction or body-part
modeling. The major limitation of the space-time feature-based approaches is that
they are not suitable for modeling more complex activities. The relations among
features are important for a non-periodic activity that takes a certain amount of
time, which most of the previous approaches ignored. Several researchers have
worked on approaches to overcome such limitations [Wong et al. 2007; Savarese
et al. 2008; Laptev et al. 2008; Ryoo and Aggarwal 2009b]. Viewpoint invariance
is another issue that space-time local feature-based approaches must handle.

2.2 Sequential approaches

Sequential approaches are the single-layered approaches that recognize human ac-
tivities by analyzing sequences of features. They consider an input video as a
sequence of observations (i.e. feature vectors), and deduce that an activity has
occurred in the video if they are able to observe a particular sequence character-
izing the activity. Sequential approaches first convert a sequence of images into
a sequence of feature vectors by extracting features (e.g. degrees of joint angles)
describing the status of a person per image frame. Once feature vectors have been
extracted, sequential approaches analyze the sequence to measure how likely the
feature vectors are produced by the person performing the activity. If the likeli-
hood between the sequence and the activity class (or the posterior probability of
the sequence belonging to the activity class) is high enough, the system decides
that the activity has occurred.

We classify the sequential approaches into two categories using a methodology-
based taxonomy: exemplar-based recognition approaches and state model-based
recognition approaches. Exemplar-based sequential approaches describe classes of
human actions using training samples directly. They maintain either a representa-
tive sequence per class or a set of training sequences per activity, and match them
with a new sequence to recognize its activity. On the other hand, state model-based
sequential approaches are approaches that represent a human action by construct-
ing a model which is trained to generate sequences of feature vectors corresponding
to the activity. By calculating the likelihood (or posterior probability) that a given
sequence is generated by each activity model, the state model-based approaches are
able to recognize the activities.

2.2.1 Exemplar-based approaches. Exemplar-based approaches represent human
activities by maintaining a template sequence or a set of sample sequences of ac-
tion executions. When a new input video is given, the exemplar-based approaches
compare the sequence of feature vectors extracted from the video with the template
sequence (or sample sequences). If their similarity is high enough, the system is
able to deduce that the given input contains an execution of the activity. Humans
may perform an identical activity in different styles and/or different rates, and the
similarity must be measured considering such variations. The dynamic time warp-
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Fig. 8. An example matching between two ‘stretching a leg’ sequences with different non-linear
execution rates. Each number represents a particular status (i.e. pose) of the person.

ing (DTW) algorithm, originally developed for speech processing, has been widely
adopted for matching two sequences with variations [Darrell and Pentland 1993;
Gavrila and Davis 1995; Veeraraghavan et al. 2006]. The DTW algorithm finds
an optimal nonlinear match between two sequences with a polynomial amount of
computations. Figure 8 shows a conceptual matching between two sequences (i.e.
strings) with different execution rates.

Darrell and Pentland [1993] proposed a DTW-based gesture recognition method-
ology using view models to represent the dynamics of articulated objects. Their
system maintains multiple models (i.e. template images) of an object in different
conditions, which they called views. Each view-model abstracts a particular status
(e.g. rotation and scale) of an articulated object such as a hand. Given a video, the
correlation scores between image frames and each view are modeled as a function
of time. Means and variations of these scores of training videos are used as a ges-
ture template. The templates are matched with a new observation using the DTW
algorithm, so that speed variations of action executions are handled. Their system
successfully recognized ‘hello’ and ‘good-bye’ gestures, and was able to distinguish
them from other gestures such as a ‘come closer’ gesture.

Gavrila and Davis [1995] also developed the DTW algorithm to recognize human
actions, utilizing a 3-dimensional (XYZ) model-based body-part tracking method-
ology. The motivation is to estimate a 3-D skeleton model at each image frame
and to analyze his/her movement by tracking them. Multiple cameras have been
used to obtain 3-D body-part models of a human, which is composed of a collection
of segments and their joint angles (i.e. the stick figure). This stick figure model
with 17 degree-of-freedom (DOF) is tracked throughout the frames, recording the
values of joint angles. These angle values are treated as features characterizing
human movement at each frame. The sequences of angle values are analyzed using
the DTW algorithm to compare them with a reference sequence pre-trained per
action, similar to [Darrell and Pentland 1993]. Gestures including ‘waving hello’,
‘waving-to-come’, and ‘twisting’ have been recognized with their system.

Yacoob and Black [1998] have treated an input as a set of signals (instead of
discrete sequences) describing sequential changes of feature values. Instead of di-
rectly matching the sequences (e.g. DTW), they have decomposed signals using
singular value decompositions (SVD). That is, they used principle component anal-
ysis (PCA)-based modeling to represent an activity as a linear combination of a
set of activity basis that essentially is a set of eigen vectors. When a new input is
provided to the system, their system calculates the coefficients of the activity basis
while considering transformation parameters such as scale and speed variations.
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The similarity between the input and an action template is measured by comparing
the coefficients of the two. Their approach showed successful recognition results for
walking-related actions and lip movements, utilizing different types of features.

Efros et al. [2003] presented a methodology for recognizing actions at a distance,
where each human is around 30 pixels tall. In order to recognize actions in such
environments where the detailed motion of humans is unclear, they used motion
descriptors based on optical flows obtained per frame. Their system first computes
the space-time volume of each person being tracked, and then calculates 2-D (XY)
optical flows at each frame by tracking humans using a temporal difference image
similar to [Yacoob and Black 1998]. They used blurry motion channels as a motion
descriptor, converting optical flows into a spatio-temporal motion descriptor per
frame. That is, they are interpreting a video of a human action as a sequence
of motion descriptors obtained from optical flows of a human. The basic nearest
neighbor classification method has been applied to a sequence of motion descriptors
for the recognition of actions. First, frame-to-frame similarities between all possible
pairs of frames from two sequences (i.e. a frame-to-frame similarity matrix) are
calculated. The recognition is done by detecting diagonal patterns in the frame-to-
frame similarity matrix. Their system was able to classify ballet movements, tennis
plays, and soccer plays even from moving cameras.

Lublinerman et al. [2006] presented a methodology that recognizes human ac-
tivities by modeling them as linear time invariant (LTI) systems. Their system
converts a sequence of images into a sequence of silhouettes, extracting two types
of contour representations: silhouette width and Fourier descriptors. An activity is
represented as a LTI system capturing the dynamics of changes in silhouette fea-
tures. SVMs have been applied to classify a new input which has been converted
to the parameters of a LTI model. Four types of simple actions, ‘slow walk’, ‘fast
walk’, ‘walk on an incline’ and ‘walk with a ball’ have been correctly recognized as
a consequence.

Veeraraghavan et al. [2006] described an activity as a function of time describing
parameter changes similar to [Yacoob and Black 1998]. The main contribution
of Veeraraghavan et al.’s system is in the explicit modeling of inter- and intra-
personal speed variations of activity executions and the consideration of them for
matching activity sequences. Focusing on the fact that humans may be able to
change the speed of an execution of a part of the activity while it may not be possible
for other parts, they learn non-linear characteristics of activity speed variations.
More specifically, their system learns the nature of time warping transformation
per activity. They are modeling an action execution with two functions: (i) a
function of feature changes over time and (ii) a function space of possible time
warping. They have developed an extension of a DTW matching algorithm to take
the time warping function into account when matching two sequences. Human
actions including ‘picking up an object’, ‘throwing’, ‘pushing’, and ‘waving’ have
been recognized with high recognition accuracy.

2.2.2 State model-based approaches. State model-based approaches are the se-
quential approaches which represent a human activity as a model composed of a
set of states. The model is statistically trained so that it corresponds to sequences
of feature vectors belonging to its activity class. More specifically, the statistical
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Fig. 9. An example hidden Markov model for the action ‘stretching an arm’. The model is one of

the most simple case among HMMs, which is designed to be strictly sequential. Each actor image
in the figure represents a pose with the highest observation probability bjk for its state wj .

model is designed to generate a sequence with a certain probability. Generally, one
statistical model is constructed for each activity. For each model, the probability of
the model generating an observed sequence of feature vectors is calculated to mea-
sure the likelihood between the action model and the input image sequence. Either
the maximum likelihood estimation (MLE) or the maximum a posteriori probability
(MAP) classifier is constructed as a result, in order to recognize activities.

Hidden Markov models (HMMs) and dynamic Bayesian networks (DBNs) have
been widely used for state model-based approaches. In both cases, an activity is
represented in terms of a set of hidden states. A human is assumed to be in one
state at each time frame, and each state generates an observation (i.e. a feature
vector). In the next frame, the system transitions to another state considering the
transition probability between states. Once transition and observation probabili-
ties are trained for the models, activities are commonly recognized by solving the
‘evaluation problem’. The evaluation problem is a problem of calculating the prob-
ability of a given sequence (i.e. new input) generated by a particular state-model.
If the calculated probability is high enough, the state model-based approaches are
able to decide that the activity corresponding to the model occurred in the given
input. Figure 9 shows an example of a sequential HMM.

Yamato et al. [1992]’s work is the first work applying standard HMMs to recog-
nize activities. They adopted HMMs which originally have been widely used for
speech recognition. At each frame, their system converts a binary foreground image
into an array of meshes. The number of pixels in each mesh is considered a feature,
thereby extracting a feature vector per frame. These feature vectors are treated as
a sequence of observations generated by the activity model. Each activity is rep-
resented by constructing one HMM that probabilistically corresponds to particular
sequences of feature vectors (i.e. meshes). More specifically, parameters of HMMs
(transition probabilities and observation probabilities) are trained with a labeled
dataset with the standard learning algorithm for HMMs. Once each of the HMMs is
trained, they are used for the recognition of activities by measuring the likelihoods
between a new input and the HMMs by solving the ‘evaluation problem’. As a
result, various types of tennis plays, such as ‘backhand stroke’, ‘forehand stroke’,
‘smash’, and ‘serve’, have been recognized with Yamato et al.’s system. They have
shown that the HMMs are able to model feature changes during human activities
reliably, encouraging other researchers to pursue further investigations.
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Starner and Pentland [1995] also used standard HMMs, in order to recognize
American Sign Language (ASL). Their method tracks the location of hands, and
extracts features describing shapes and positions of the hands. Each word of ASL
is modeled as one HMM generating a sequence of features describing hand shapes
and positions, similar to the case of [Yamato et al. 1992]. Their method uses the
Viterbi algorithm for each HMM, to estimate the probability the HMM generated
the observations. The Viterbi algorithm provides an efficient approximation of the
likelihood distance, enabling an unknown observation sequence to be classified into
the most suitable word.

Bobick and Wilson [1997] also recognized gestures using state models. They rep-
resented a gesture as a 2-D XY trajectory describing the location changes of a hand.
Each curve is decomposed into sequential vectors, which can be interpreted as a
sequence of states computed from a training example. Furthermore, each state is
made to be fuzzy, in order to consider speed and motion variance in executions of
the same gesture. This is similar to a fuzzy version of a sequential Markov model
(MM). Transition costs between states, which correspond to the transition proba-
bilities in the case of HMMs, are also defined in their system. For the recognition
of gestures with their model, a dynamic programming algorithm is designed. Their
system measures an optimal matching cost between the given observation (i.e. mo-
tion trajectory) and each prototype using the dynamic programming algorithm.
Applying their framework, they have successfully recognized two different types of
gestures: ‘wave’ and ‘point’.

In addition, approaches using variants of HMMs also have been developed for
human activity recognition [Oliver et al. 2000; Park and Aggarwal 2004; Natarajan
and Nevatia 2007]. Similar to previous frameworks for action recognition using
HMMs [Yamato et al. 1992; Starner and Pentland 1995; Bobick and Wilson 1997],
they construct one model (HMM) for each activity they want to recognize, and
use visual features from the scene as observations directly generated by the model.
The methods with extended HMMs are designed to handle more complex activities
(usually combinations of multiple simple actions) by extending the structure of the
basic HMM.

Oliver et al. [2000] constructed a variant of the basic HMM, the coupled HMM
(CHMM), to model human-human interactions. The major limitation of the basic
HMM is its inability to represent activities composed of motions of two or more
agents. A HMM is a sequential model and only one state is activated at a time,
preventing it from modeling the activities of multiple agents. Oliver et al. intro-
duced the concept of the CHMM to model complex interactions between two per-
sons. Basically, a CHMM is constructed by coupling multiple HMMs, where each
HMM models the motion of one agent. They have coupled two HMMs to model
human-human interactions. More specifically, they coupled the hidden states of two
different HMMs by specifying their dependencies. As a result, their system was able
to recognize complex interactions between two persons, such as concatenation of
‘two persons approaching, meeting, and continuing together’.

Park and Aggarwal [2004] used a DBN to recognize gestures of two interacting
persons. They have recognized gestures such as ‘stretching an arm’ and ‘turning
a head left’, by constructing a tree-structured DBN to take advantage of the de-
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pendent nature among body parts’ motion. A DBN is an extension of a HMM,
composed of multiple conditionally independent hidden nodes that generate obser-
vations at each time frame directly or indirectly. In the Park and Aggarwal’s work,
a gesture is modeled as state transitions of hidden nodes (i.e. body-part poses) in
one time point to the next time point. Each pose is designed to generate a set of
features associated with the corresponding body part. Features including locations
of skin regions, maximum curvature points, and the ratio and orientation of each
body-part have been used to recognize gestures.

Natarajan and Nevatia [2007] developed an efficient recognition algorithm using
coupled hidden semi-Markov models (CHSMMs), which extend previous CHMMs
by explicitly modeling the duration of an activity staying in each state. In the case
of basic HMMs and CHMMs, the probability of a person staying in an identical
state decays exponentially as time increases. In contrast, each state in a CHSMM
has its own duration that best models the activity the CHSMM is representing. As
a result, they were able to construct a statistical model that captures the charac-
teristics of activities that the system wants to recognize better compared to HMMs
and CHMMs. Similar to [Oliver et al. 2000], they tested their system for the recog-
nition of human-human interactions. Because of the CHSMMs’ ability to model the
duration of the activity, the recognition accuracy using CHSMMs was better than
other simpler statistical models. Lv and Nevatia [2007] also designed a CHMM-like
structure called the Action Net to construct a view-invariant recognition system
using synthetic 3-D human poses.

2.2.3 Comparison. In general, sequential approaches consider sequential rela-
tionships among features in contrast to most of the space-time approaches, thereby
enabling detection of more complex activities (i.e. non-periodic activities such as
sign languages). Particularly, the recognition of the interactions of two persons,
whose sequential structure is important, has been attempted in [Oliver et al. 2000;
Natarajan and Nevatia 2007].

Compared to the state model-based sequential approaches, exemplar-based ap-
proaches provide more flexibility for the recognition system, in the sense that mul-
tiple sample sequences (which may be completely different) can be maintained by
the system. Further, the dynamic time warping algorithm generally used for the
exemplar-based approaches provides a non-linear matching methodology consider-
ing execution rate variations. In addition, exemplar-based approaches are able to
cope with less training data than the state model-based approaches.

On the other hand, state-based approaches are able to make a probabilistic anal-
ysis on the activity. A state-based approach calculates a posterior probability of
an activity occurring, enabling it to be easily incorporated with other decisions.
One of the limitations of the state-based approaches is that they tend to require a
large amount of training videos, as the activity they want to recognize gets more
complex. Table II is provided for the comparison of the systems.

3. HIERARCHICAL APPROACHES

The main idea of hierarchical approaches is to enable the recognition of high-level
activities based on the recognition results of other simpler activities. The mo-
tivation is to let the simpler sub-activities (also called sub-events) which can be
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Type Approaches Required low-
levels

Execution 
variations Probabilistic

Darrell and 
Pentland ’93 None √

Yacoob and 
Black ’98

Body-part 
estimation √ Gesture-level

Natarajan and 
Nevatia ’07

Action 
recognition Model-based √ Interaction-level

Efros et al. ’03 Tracking Linear only Action-level

Lublinerman et 
al. ’06

Background 
subtraction Linear only Action-level

√

√

√

√

√

Gesture-level

Gavrila and 
L. Davis ’95

Body-part 
estimation √ Gesture-level

Exemplar-based

Yamato et al. ’92 Background 
subtraction Model-based Action-level

Oliver et al. ’00 Background 
subtraction Model-based Interaction-levelState model-based

Lv and 
Nevatia ’07 3-D pose model Model-based Action-level

Target activities

Veeraraghavan et 
al. ’06

Background 
subtraction √ Action-level

Starner and 
Pentland ’95 Tracking Model-based Gesture-level

Bobick and 
Wilson ’97 Tracking Model-based Gesture-level

Park and 
Aggarwal ’04

Background 
subtraction Model-based Gesture-level

Table II. Comparison among sequential approaches. The column ‘required low-levels’ specifies the

low-level components necessary for the approach to be applicable. ‘Execution variations’ shows
whether the system is able to handle variations in the execution of human activities (e.g. speed

variations). ‘Probabilistic’ indicates that the system makes a probabilistic inference, and ‘target

activity’ shows the type of human activities the system aims to recognize. Notably, [Lv and
Nevatia 2007]’s system is view-invariant.

modeled relatively easily to be recognized first, and then to use them for the recog-
nition of higher-level activities. For example, a high-level interaction of ‘fighting’
may be recognized by detecting a sequence of several ‘punching’ and ‘kicking’ in-
teractions. Therefore, in hierarchical approaches, a high-level human activity (e.g.
fighting) that the system aims to recognize is represented in terms of its sub-events
(e.g. punching), which themselves may be decomposable until the atomicity is
obtained. That is, sub-events serve as observations generated by a higher-level
activity. The paradigm of hierarchical representation not only makes the recogni-
tion process computationally tractable and conceptually understandable, but also
reduces redundancy in the recognition process by re-using recognized sub-events
multiple times.

In general, common activity patterns of motion that appear frequently during
high-level human activities are modeled as atomic-level (or primitive-level) actions,
and high-level activities are represented and recognized by concatenating them hier-
archically. In most hierarchical approaches, these atomic actions are recognized by
adopting single-layered recognition methodologies which we presented in the pre-
vious section. For example, the gestures ‘stretching hand’ and ‘withdrawing hand’
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occur often in human activities, implying that they can become good atomic actions
to represent human activities such as ‘shaking hands’ or ‘punching’. Single-layered
approaches such as sequential approaches using HMMs can safely be adopted for
recognition of those gestures.

The major advantage of hierarchical approaches over non-hierarchical approaches
(i.e. single-layered approaches) is their ability to recognize high-level activities
with more complex structures. Hierarchical approaches are especially suitable for
a semantic-level analysis of interactions between humans and/or objects as well as
complex group activities. This advantage is a result of two abilities of hierarchical
approaches: the ability to cope with less training data, and the ability to incorporate
prior knowledge into the representation.

First, the amount of training data required to recognize activities with hierarchi-
cal models is significantly less than that with single-layered models. Even though
it may also possible for non-hierarchical approaches to model complex human ac-
tivities in some cases, they generally require a large amount of training data. For
example, single-layered HMMs need to learn a large number of transition and ob-
servation probabilities, since the number of hidden states increases as the activities
get more complex. By encapsulating structurally redundant sub-events shared by
multiple high-level activities, hierarchical approaches model the activities with a
lesser amount of training and recognize them more efficiently.

In addition, the hierarchical modeling of high-level activities makes recognition
systems to incorporate human knowledge (i.e. prior knowledge on the activity)
much easier. Human knowledge can be included in the system by listing semanti-
cally meaningful sub-activities composing a high-level activity and/or by specifying
their relationships. As mentioned above, when modeling high-level activities, non-
hierarchical techniques tend to have complex structures and observation features
which are not easily interpretable, preventing a user from imposing prior knowl-
edge. On the other hand, hierarchical approaches model a high-level activity as an
organization of semantically interpretable sub-events, making the incorporation of
prior knowledge much easier.

Using our approach-based taxonomy, we categorize hierarchical approaches into
three groups: statistical approaches, syntactic approaches, and description-based
approaches. Figure 3 illustrates our taxonomy tree as well as the lists of selected
previous works corresponding to the categories.

3.1 Statistical approaches

Statistical approaches use statistical state-based models to recognize activities. In
the case of hierarchical statistical approaches, multiple layers of state-based models
(usually two layers) such as HMMs and DBNs are used to recognize activities with
sequential structures. At the bottom layer, atomic actions are recognized from
sequences of feature vectors, just as in single-layered sequential approaches. As
a result, a sequence of feature vectors are converted to a sequence of atomic ac-
tions. The second-level models treat this sequence of atomic actions as observations
generated by the second-level models. For each model, a probability of the model
generating a sequence of observations (i.e. atomic-level actions) is calculated to
measure the likelihood between the activity and the input image sequence. Either
the maximum likelihood estimation (MLE) or the maximum a posteriori probabil-
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Punching

Arm stretch : 0.8
Arm stay stretched : 0.15
Arm stay withdrawn : 0.05

Arm withdraw : 0.85
Arm stay withdrawn: 0.10
Arm stay stretched : 0.05

Upper-layer

Arm stretch Arm withdraw

……

Lower-layer
Arm stay stretched Arm stay withdrawn

……

Fig. 10. An example hierarchical hidden Markov model (HHMM) for recognizing an activity
‘punching’. The model is composed of two layers. In the lower layer, HMMs are used to rec-

ognize various atomic-level activities, such as ‘stretching’ and ‘withdrawing’. The upper layer

HMM treats recognition results of the lower layer HMMs are an input, recognizing ‘punching’ is
‘stretching’ and ‘withdrawing’ occurred in a sequence.

ity (MAP) classifier is constructed as a result. Figure 10 shows an example model
of a statistical hierarchical approach, which is designed to recognize ‘punching’.

Oliver et al. [2002] presented layered hidden Markov models (LHMMs), one of
the most fundamental forms of the hierarchical statistical approaches (e.g. Figure
10). In this approach, the bottom layer HMMs recognize atomic actions of a single
person by matching the models with the sequence of feature vectors extracted from
videos. The upper layer HMMs treats recognized atomic actions as observations
generated by the upper layer HMMs. That is, they essentially are representing
a high-level activity as a sequence of atomic actions by making each state in the
upper layer HMM to probabilistically correspond to one atomic action. By its
nature, all sub-events of an activity are required to be strictly sequential in each
LHMM. Human-human interactions in a conference room environment including ‘a
person giving a presentation’ and ‘face-to-face conversation’ have been recognized
based on the detection of atomic-level actions (e.g. ‘nobody’, ‘one active person’,
and ‘multiple persons present’). Each layer of the HMM is designed to be trained
separately with fully labeled data, enabling a flexible retraining.

The paradigm of multi-layered HMMs has been explored by various researchers.
Nguyen et al. [2005] also constructed hierarchical HMMs of two layers to recognize
complex sequential activities. Similar to [Oliver et al. 2002], they have constructed
two-levels of HMMs to recognize human activities such as ‘a person having a meal’
and ‘a person having a snack’. Zhang et al. [2006] constructed multi-layered HMMs
to recognize group activities occurring in a meeting room. Their framework is
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also composed of two-layered HMMs. Their system recognized atomic actions of
‘speaking’, ‘writing’, and ‘idling’ using the lower-layer HMMs. With the upper-
layer HMMs, group activities such as ‘monologue’, ‘discussion’, and ‘presentation’
have been represented and recognized with the atomic actions. Yu and Aggarwal
[2006] used a block-based HMM for the recognition of a person climbing a fence.
This block-based HMM can also be interpreted as a 2-layered HMM.

In addition, hierarchical approaches using DBNs have been studied for the recog-
nition of complex activities. DBNs may contain multiple levels of hidden states, sug-
gesting that they can be formulated represent hierarchical human activities. Gong
and Xiang [2003] have extended traditional HMMs to construct dynamic probabilis-
tic networks (DPNs) to represent activities of multiple participants. Their method
was able to recognize group activities of trucks loading and unloading cargo. Dai
et al. [2008] constructed DBNs to recognize group activities in a conference room
environment similar to [Zhang et al. 2006]. High-level activities such as ‘break’,
‘presentation’, and ‘discussion’ were recognized based on the atomic actions ‘talk-
ing’, ‘asking’, and so on. Damen and Hogg [2009] constructed Bayesian networks
using a Markov chain Monte Carlo (MCMC) for hierarchical analysis of bicycle-
related activities (e.g. ‘drop-and-pick’). They used Bayesian networks to model re-
lations between atomic-level actions, and these Bayesian networks were iteratively
updated using the MCMC to search for the structure that best explains ongoing
observations.

Shi et al. [2004] proposed a hierarchical approach using a propagation network
(P-net). The structure of a P-net is similar to that of a HMM: an activity is
represented in terms of multiple state nodes, their transition probabilities, and the
observation probabilities. Their work also decomposes actions into several atomic
actions, and constructs a network describing the temporal order needed among
them. The main difference between a P-net and a HMM is that the P-net allows
activation of multiple state nodes simultaneously. This implies that a P-net is
able to model a high-level activity composed of concurrent as well as sequential
sub-events. If the sub-events are activated in a particular temporal order specified
through the graph, the system is able to deduce that the activity occurred. They
have represented an activity of a person performing a chemical experiment using a
P-net, and have successfully recognized it.

Statistical approaches are especially suitable when recognizing sequential activ-
ities. With enough training data, statistical models are able to reliably recognize
corresponding activities even in the case of noisy inputs. The major limitation of
statistical approaches are their inherent inability to recognize activities with com-
plex temporal structures, such as an activity composed of concurrent sub-events.
For example, HMMs and DBNs have difficulty modeling the relationship of an ac-
tivity A occurred ‘during’, ‘started with’, or ‘finished with’ an activity B. The edges
of HMMs or DBNs specify the sequential order between two nodes, suggesting that
they are suitable for modeling sequential relationships, not concurrent relationships.

3.2 Syntactic approaches

Syntactic approaches model human activities as a string of symbols, where each
symbol corresponds to an atomic-level action. Similar to the case of hierarchical
statistical approaches, syntactic approaches also require atomic-level actions to be
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Punching -> stretch withdraw : 0.8
| stretch stay_withdrawn : 0.1
| stay_stretched withdraw : 0.1

Fighting -> Punching : 0.3
| Punching Fighting : 0.7

Fig. 11. The figure shows a simplified example of production rules of a SCFG used for representing

and recognizing ‘fighting’ interaction. The ‘fighting’ is defined as any number of consecutive
‘punching’ action which itself can be decomposed into ‘stretching’ and ‘withdrawal’ similar to

Figure 10.

recognized first, using any of the previous techniques. Human activities are rep-
resented as a set of production rules generating a string of atomic actions, and
they are recognized by adopting parsing techniques from the field of programming
language. Context-free grammars (CFGs) and stochastic context-free grammars
(SCFGs) have been used by previous researchers to recognize high-level activities.
Production rules of CFGs naturally lead to a hierarchical representation and recog-
nition of the activities. Figure 11 shows an example SCFG.

Ivanov and Bobick [2000] proposed a hierarchical approach for the recognition
of high-level activities using SCFGs. They divided the framework into two layers:
the lower layer using HMMs for the recognition of simple (i.e. atomic) actions, and
the higher layer using stochastic parsing techniques for the recognition of high-level
activities. They have encoded a large number of stochastic productions rules which
are able to explain all activity possibilities. The higher layer parses a string of
atomic actions generated by the lower layer, recognizing activities probabilistically.
The Earley-Stolcke parsing algorithm is extended to handle uncertain observations.
Moore and Essa [2002] also used SCFGs for the recognition of activities, focusing on
multi-task activities. By extending [Ivanov and Bobick 2000], they have introduced
more reliable error detection and recovery techniques for the recognition. They
were able to recognize human activities happening in a Blackjack card game, such
as ‘a dealer dealt a card to a player’, with a high accuracy.

Minnen et al. [2003] adopted SCFGs for the activity recognition as well. Their
system focuses on the segmentation problem of multiple objects. They have shown
that the semantic-level processing of activities using CFGs may help the segmenta-
tion and the tracking of objects. The concept of the hallucinations is introduced to
compensate for the failures of atomic-level recognition explicitly. Taking advantage
of the CFG parsing techniques while considering hallucinations, they have recog-
nized the activity of a person working on the ‘Tower of Hanoi’ problem. They were
able to correctly recognize the activities without any appearance information om
the objects, depending solely on the motion information of the activities.

Joo and Chellappa [2006] designed an attribute grammar for recognition, which
is an extension of the SCFG. Their grammar attaches semantic tags and conditions
to the production rules of the SCFG, enabling the recognition of more descriptive
activities. That is, their grammar is able to describe feature constraints as well
as temporal constraints of atomic actions. Only when the observations satisfy the
syntax of the SCFG (i.e. only when the string can be generated by following the
production rules) and the feature constraints are satisfied, their system decides that
the activity has occurred. As a result, they have recognized events in a parking lot
by tracking cars and humans. Atomic actions including ‘parking’, ‘picking up’, and
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‘walk though’ are first detected based on location changes of cars and humans. By
representing the typical activity in a parking lot, normal and abnormal activities
are distinguished.

One of the limitations of syntactic approaches is in the recognition of concurrent
activities. Syntactic approaches are able to probabilistically recognize hierarchical
activities composed of sequential sub-events, but are inherently limited on activi-
ties composed of concurrent sub-events. Since syntactic approaches are modeling a
high-level activity as a string of atomic-level activities composing them, the tem-
poral ordering of atomic-level activities has to be strictly sequential. In addition,
synthetic approaches assume that all observations are parsed by applying their pro-
duction rules. For these systems, a user must provide a set of production rules for
all possible events, even for a large domain. Therefore, they tend to have difficulty
when an unknown observation (e.g. a pedestrian) interferes with the system. In
order to overcome such limitation, there was an attempt by Kitani et al. [2007] to
develop an algorithm to automatically learn grammar rules from observations.

3.3 Description-based approaches

A description-based approach is a recognition approach that explicitly maintains
human activities’ spatio-temporal structures. They represent a high-level human
activity in terms of simpler activities composing the activity (i.e. sub-events), de-
scribing their temporal, spatial, and logical relationships. That is, description-based
approaches model a human activity as an occurrence of its sub-event (which might
be composed of their own sub-events) that satisfies certain relations. Therefore,
the recognition of the activity is performed by searching the sub-events satisfying
the relations specified in its representation. All description-based approaches are
inherently hierarchical (since they use sub-events to represent human activities),
and they are able to handle activities with concurrent structures.

In description-based approaches, a time interval is usually associated with an
occurring sub-event to specify necessary temporal relationships among sub-events.
Allen’s temporal predicates [Allen 1983; Allen and Ferguson 1994] have been widely
adopted for these approaches to specify relationships between time intervals [Pin-
hanez and Bobick 1998; Siskind 2001; Nevatia et al. 2003; Vu et al. 2003; Ryoo
and Aggarwal 2006a; Gupta et al. 2009]. Seven basic predicates that Allen has
defined are: before, meets, overlaps, during, starts, finishes, and equals. Note that
the predicates before and meets describe sequential relationships while the other
predicates are used to specify concurrent relationships. Figure 12 (a) illustrates a
conceptual temporal structure of a human-human interaction ‘pushing’ represented
in terms of time intervals.

In a description-based approach, a CFG is often used as a formal syntax for
the representation of human activities [Nevatia et al. 2004; Ryoo and Aggarwal
2006a]. Notice that the description-based approaches’ usage of CFGs is completely
different from that of syntactic approaches: Syntactic approaches directly use CFGs
for the recognition, implying that the CFGs themselves describe the semantics of
the activities. On the other hand, a description-based approach adopts a CFG as
a syntax to represent the activities formally. The activities’ semantics are usually
encoded in a structure similar to that of a programming language (e.g. Figure 12
(b)), and the CFG only plays a role to ensure that the activity representation fits its
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Push_interaction(p1, p2) = {
list( def(‘i’, Stretch(p1’s arm)),

list( def(‘j’, Stay_stretched(p2’s arm)),
list( def(‘k’, Touching(p1, p2)),

def(‘l’, Depart(p2, p1)) ))),
and( meets(‘i’, ‘j’),

and( during(‘k’, ‘this’),
and( meets(‘k’, ‘l’),

and( starts(‘i’, ‘this’),
finishes(‘j’, ‘this’) ))))  

};

k = Touching(p1, p2) l = Depart(p2, p1)

this = Push_interactions(p1, p2)

j = Stay_Stretched(p1’s arm)i = Stretch(p1’s arm)

(a) (b)

Fig. 12. (a) Time intervals of an interaction ‘push’ and its sub-events, and (b) its programming
language-like representation following Ryoo and Aggarwal [2006]’s syntax ( c©2009 Springer). The

figure (a) is a conceptual illustration describing the activity’s temporal structure, whose sub-

events are organized sequentially as well as concurrently. Following the CFG, we convert this into
a formal representation as shown in the figure (b).

grammar. In general, the recognition is performed by developing an approximation
algorithm to solve the constraint satisfaction problem (which is NP-hard).

Pinhanez and Bobick [1998] directly adopted the concept of Allen’s interval alge-
bra constraint network (IA-network) [Allen 1983] to describe the temporal structure
of activities. In an IA-network, sub-events are specified as nodes and their tem-
poral relationships are described with typed edges between them. Pinhanez and
Bobick have developed a methodology to convert an IA-network into a {past, now,
future} network (PNF-network). The PNF-network that they have proposed is
able to describe the identical temporal information contained in the IA-network,
while making it computationally tractable.

They have developed a polynomial time algorithm to process the PNF-network.
Their system recognizes the top-level activity by checking which sub-events have
already occurred and which have not. They have shown that their representation
is expressive enough to recognize cooking activities occurring in a kitchen environ-
ment, such as ‘picking up a bowl’. Atomic-level actions were manually labeled from
the video in their experiments, and their system was able to recognize the activities
even when one of the atomic actions was not provided. One of the drawbacks of
their system is that a sub-network corresponding to a sub-event has to be specified
redundantly if it is used multiple times. Another limitation is that they require all
sub-event relations to be expressed in a network form.

Intille and Bobick [1999] designed a description-based recognition approach to
analyze plays in American football. Even though their system was limited to use
conjunctions of relatively simple temporal predicates (before and around), they
have shown that complex human activities can be represented by listing the tem-
poral constraints in a format similar to those of programming languages, instead
of a network form. They have represented human activities with three levels of
hierarchy: atomic-level, individual-level, and team-level activities.

A Bayesian belief network is constructed for the recognition of the activity, based
on its temporal structure representation. The root node of the belief network
corresponds to the high-level activity that the system aims to recognize. The other
nodes correspond to the occurrence of the sub-events or describe the temporal

ACM Journal Name, Vol. V, No. N, Month 20YY.



Human Activity Analysis: A Review · 29

relationships between the sub-events. The nodes become ‘true’ if the sub-events
occur and the relationships are satisfied. Only when all nodes are probabilistically
satisfied and propagated to the root node, the activity is said to be detected. Similar
to [Pinhanez and Bobick 1998], they have used manually labeled data.

Siskind [2001] also proposed a hierarchical description-based approach for human
activity recognition. Notably, it was able to represent and recognize high-level ac-
tivities with more than three levels. Siskind’s methodology uses force dynamics for
the recognition of simple actions, and uses the description-based approach called
event logic to recognize high-level activities. It particularly focused on the recog-
nition of an activity with a liquid characteristic, whose occurrences are true for all
sub-intervals of a particular time interval. The approach computes the recognized
activity’s time interval by calculating ‘union’ and ‘intersection’ of sub-events’ time
intervals, assuming liquidity. This suggests that the recognized activity itself can
be used as a sub-event of another activity, but is permitted to be used only once.

Nevatia et al. [2003] designed a representation language called ‘VERL’ to describe
human activities. They classified human activities into three categories similar to
[Intille and Bobick 1999], enabling the representation of human activities having
three levels of hierarchy: primitive events, single-thread composite events, and
multi-thread composite events. Allen’s temporal predicates, spatial predicates, and
logical predicates were used to represent human activities by specifying their nec-
essary conditions. Bayesian networks are used for primitive event recognition, and
HMMs are used for the recognition of single-thread composite events (i.e. they are
strictly sequential). A heuristic algorithm is designed for the constraint satisfac-
tion problem, recognizing interactions between multiple persons. Their system was
probabilistic, but was not able to overcome the failures of low-level components.
Vu et al. [2003]’s approach was similar to [Nevatia et al. 2003], while extending the
representation to describe activities with any levels of hierarchy. However, unlike
Nevatia et al.’s system, only conjunctive predicates are allowed when concatenat-
ing multiple temporal relationships (i.e. only and allowed, not or). Hakeem et al.
[2004] have designed a representation language, ‘CASEE’, which also represent an
activity as a conjunction of necessary temporal and causal relations.

Several researchers utilized the Petri nets to represent and recognize human
activities [Zaidi 1999; Nam et al. 1999; Ghanem et al. 2004]. Petri nets specify the
temporal ordering of an activity’s sub-events in terms of a graph representation.
The recognition is done by sequentially handing tokens in the graph, where each
node corresponds to a state before (or after) the completion of particular sub-
events. Zaidi [1999] showed that the Petri nets are able to fully represent temporal
relationships described by Allen’s temporal predicates. Nam et al. [1999] applied
the Petri nets for the recognition of hand gestures from videos. Ghanem et al. [2004]
took advantage of the Petri nets to represent and recognize interactions between
humans and vehicles similar to [Ivanov and Bobick 2000]. Because of the Petri
net’s characteristic that the tokens cannot describe multiple possibilities and are
non-reversible (i.e. the recognition process is strictly sequential), these deterministic
systems have limitations in terms of processing complex scenes.

In order to overcome the limitations of the previous approaches, Ryoo and Ag-
garwal [2006a] proposed a description-based approach using a CFG as a syntax of
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their representation language. Their formal grammar enables the representation of
human-human interactions with any levels of hierarchy, which are described as logi-
cal concatenations (and, or, and not) of complex temporal and spatial relationships
among their sub-events. As a result, they have represented high-level human inter-
actions composed of concurrent sub-events (e.g. ‘hand shaking’ and ‘pushing’) in
terms of time interval variables and predicates (e.g. Allen’s temporal predicates).
They have developed a hierarchical semantic matching between the observations
and the representations for the activity recognition. In the lowest level, Bayesian
networks and HMMs are used for the recognition of atomic actions from a sequence
of raw image frames. The recognition of represented high-level activities is done by
performing a hierarchical matching from the bottom to the top.

In addition, their approach was extended to recognize recursive activities with
a continuous nature, such as ‘fighting’ and ‘greeting’ [Ryoo and Aggarwal 2006b].
Even though the representation of recursive activities with sequential sub-events has
been possible with syntactic approaches, the recognition of recursive activities with
complex concurrent sub-events has been limitedly studied. They have introduced
the special time interval ‘this’, which always corresponds to the activity being
represented, and proposed an iterative algorithm to recognize activities described
using ‘this’. With the proposed approach, the recursive activity ‘fighting’ was
represented as a single negative interaction (e.g. ‘punching’ and ‘pushing’) followed
by a shorter ‘fighting’, and has successfully been recognized.

Furthermore, Ryoo and Aggarwal [2009a] proposed a probabilistic extension of
their recognition framework which is able to compensate for the failures of its low-
level components. One of the limitations of description-based approaches is that
they are mostly deterministic, and are fragile when their low-level components are
noisy. Ryoo and Aggarwal have overcome such limitations. They have used a
logistic regression to model the probability distribution of an activity, and used it
to detect the activity even when some of its sub-events have been mis-classified.
In order to compensate for the complete failure of the atomic-level components
(i.e. no atomic action detected at all), they took advantage of the concept of the
hallucination time intervals, similar to the ones used in [Minnen et al. 2003].

There also has been attempts to adopt symbolic artificial intelligence techniques
to recognize human activities. Tran and Davis [2008] adopted Markov logic net-
works (MLNs) to probabilistically infer events in a parking lot. This 2-layered
approach successfully handled uncertainties in human activities. However, their
MLNs relied on the assumption that an identical sub-event occurs only once during
interactions, limiting itself from being applied to dynamically interacting actors.

Gupta et al. [2009] recently presented a description-based approach for a prob-
abilistic analysis as well. Unlike other description-based approaches designed to
recognize complex activities, their approach aims to recognize atomic-level actions
more reliably by modeling causality among the actions. A tree structured AND-OR
graph similar to [Hongeng et al. 2004] has been used to represent a storyline of a
sports game (e.g. baseball), labeling each action (e.g. hitting) that fits the storyline.
Their system iteratively searches for the best explaining AND-OR graph structures
and the best video-action associations by taking advantage of captions and video
trajectories. That is, a representation fitting algorithm has been developed.
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Type Approaches Levels of 
hierarchy

Complex 
temporal 
relations

Complex logical 
concatenations

Recognition of 
recursive 
activities

Handle 
imperfect low-

levels

Oliver et al. ’02 limited 
(2-levels) √

Nevatia et 
al. ’03

limited
(3-levels) √ √

Ryoo and 
Aggarwal ’09a unlimited √ √ √ √

Shi et al. ’04 limited 
(2-levels)

one relation:
‘before’ √Statistical

Ivanov and 
Bobick ’00 unlimited √ √

Syntactic

Intille and 
Bobick ’99 unlimited

two relations:
‘before’ and 

‘around’
√

Vu et al. ’03 unlimited √
conjunctions 

only

Ghanem et 
al. ’04 unlimited

time intervals of 
an activity do 
not overlap

√

Description-
based

Damen and 
Hogg ’09

limited 
(2-levels) √

Joo and 
Chellappa ’06 unlimited conjunctions 

only √ √

Pinhanez and 
Bobick ’98

limited 
(redundant 

nodes required)

network form 
only

network form 
only

compensates 
1 error

Siskind ’01 unlimited
a sub-event 

participates only 
once

√

Gupta et al. ’09 limited
(2-levels) √

network form 
only √

Table III. A table comparing the abilities of the hierarchical approaches. The column ‘levels of

hierarchy’ describes the possible levels of the activity hierarchy. ‘Complex temporal relations’
suggests that the approach is able to represent and recognize activities with a complex temporal

structure. Similarly, ‘complex logical concatenations’ shows whether the system is able to represent

activities with complex logical concatenations.

3.4 Comparison

Hierarchical approaches are suitable for recognizing high-level activities which can
be decomposed into simpler sub-events. Because of their nature, they can more
easily incorporate human knowledge into the systems and require less training data
as pointed out by many researchers [Oliver et al. 2002; Nevatia et al. 2003; Ryoo
and Aggarwal 2006a]. Statistical and syntactic approaches provide a probabilistic
framework for reliable recognition with noisy inputs. However, they have difficulties
representing and recognizing activities with concurrently organized sub-events.

Description-based approaches are able to represent and recognize human activ-
ities with complex temporal structures. Not only sequentially occurring, but also
concurrent organized sub-events are handled with description-based approaches.
The major drawback of description-based approaches are their inability to com-
pensate for the failures of low-level components (e.g. gesture detection failure).
That is, most of the description-based approaches have a deterministic high-level
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t=31 t=43 t=51t=21 t=64

(a) A human-object interaction of a person placing a box in a trash bin.

t=52 t=64 t=85t=22 t=120

(a) A human-object interaction of a person stealing another’s suitcase.

Fig. 13. Example human-object interactions that Ryoo and Aggarwal [2007] have recognized
( c©2007 IEEE).

component. Pinhanez and Bobick [1998] showed that the high-level system has
the potential to compensate for a single low-level detection failure, and a couple
of recent works have proposed probabilistic frameworks for description-based ap-
proaches [Ryoo and Aggarwal 2009a; Gupta et al. 2009]. Table III compares the
abilities of important hierarchical approaches.

4. HUMAN-OBJECT INTERACTIONS AND GROUP ACTIVITIES

In this section, we present and summarize previous papers on the recognition of
human-object interactions and those on the recognition of group activities. These
approaches fall into different categories if the approach-based taxonomy of the
previous sections is applied as shown in Figures 2 and 3. However, even though they
use different methodologies for the recognition, they exhibit interesting common
properties and characteristics since they share the same objective. In the first
subsection, we discuss approaches for analyzing interplays between humans and
objects. Next, we compare various recognition approaches for group activities.

4.1 Recognition of interactions between humans and objects

In order to recognize interactions between humans and objects, an integration of
multiple components is required. The identification of objects and motion involved
in an activity as well as analysis of their interplays is essential for the reliable
recognition of human activities involving humans and objects. While we provide
an overview of general human-object recognition approaches, we particularly focus
on the approaches that analyzed interplays between object recognition, motion
estimation, and activity-level analysis toward robust recognition of human-object
interactions. Figure 13 shows an example of human-object interactions.

The most typical human-object interaction recognition approaches are the ap-
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proaches ignoring interplays between object recognition and motion estimation. In
those works, objects are generally recognized first, and activities involving them are
recognized by analyzing the objects’ motion. They have made the object recogni-
tion and motion estimation independent or made it so that the motion estimation
is strictly dependent on the object recognition. Most of the previous recognition
approaches fall into this category, including the approaches that we have discussed
in previous sections [Siskind 2001; Vu et al. 2003; Nevatia et al. 2003; Shi et al.
2004; Yu and Aggarwal 2006; Damen and Hogg 2009].

On the other hand, several researchers have studied relationships and dependen-
cies between objects, motion, and human activities to improve object recognitions
as well as activity recognitions [Moore et al. 1999; Gupta and Davis 2007; Ryoo
and Aggarwal 2007]. In principle, these components are highly dependent on each
other: objects have their own roles, suggesting that the way humans interact with
an object depends on the identity of the object. For example, an object ‘water
bottle’ is expected to be involved in a particular type of interaction: ‘drinking’.
Therefore, the motion related to the water bottle must be different from that of
‘spray bottle’, even though their appearances are similar. Several researchers have
designed a probabilistic model describing mutual information between objects and
humans’ inherent motion with the objects. The results suggest that the recogni-
tion of objects can benefit activity recognition while activity recognition helps the
classification of objects, and we discuss these approaches one by one.

Moore et al. [1999] constructed the system that compensates for the failures of
object classification with the recognition results of simple actions. Most of the
time, their system performs the object recognition first, and then estimates human
activities with objects depending on the object recognition results as most of the
other researchers have done. However, when an object component fails to make a
concrete decision, their systems uses action information of objects to compensate
for the object recognition. In order to recognize actions, positions of hands and
their tracking results are used. HMMs are applied to characterize actions based
on the tracking results. Finally, an object-based evidence is integrated with an
action-based evidence using a Bayesian network to decide the final class of the
object, making the system recover from the failure of the object recognition. They
have tested their system with various objects in office, kitchen, and automobile
environments (such as books, phones, bowls, cups, and steering wheels). They
focused on the recognition of simple activities of a single person.

Peursum et al. [2005] proposed a Bayesian framework for better labeling of ob-
jects based on activity context. Similar to [Moore et al. 1999], they have focused
on the fact that humans interact with objects in many different ways, depending
on the function of the objects. They have pointed out that appearance (i.e. shape)
cues of objects are unreliable due to scale and view point variations, and presented
an object recognition solely based on the activity information. The system calcu-
lates an interaction signature per object, which essentially is a concatenation of
activity recognition results involving the object. HMMs are adopted for the action
recognition: a 3-D pose skeleton of a person as well as relative locations of objects
are analyzed to recognize activities, where each object candidate is computed by
region segmentation based on colors. They have recognized objects such as ‘floor’,
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‘chair’, and ‘keyboard’, by recognizing printing-related activities.
Gupta and Davis [2007] proposed a probabilistic model integrating an objects’ ap-

pearance, human motion with objects, and reactions of objects. Similar to [Moore
et al. 1999], a Bayesian network is constructed to combine cues. Two types of
motion in which humans interact with objects, ‘reach motion’ and ‘manipulation
motion’, are estimated using trajectories as well as HMMs. Reactions of objects,
i.e. the effect of human activity in relation to their interaction with objects such
as ‘a light going on after pressing the switch’, are considered as well for the clas-
sification. The Bayesian network integrates all of these information, and makes a
final decision to recognize objects and human activities. Human-object interactions
involving cups, spray bottles, phones, and flash lights have been recognized in their
experiments.

Ryoo and Aggarwal [2007] designed and implemented a recognition system for
high-level human-object interactions such as ‘a person stealing another’s suitcase’.
Similar to the above-mentioned approaches [Moore et al. 1999; Gupta and Davis
2007], their object recognition and motion estimation components were constructed
to help each other. Furthermore, their system is designed to compensate for object
recognition failures or motion estimation failures using high-level activity recogni-
tion results probabilistically. That is, their object recognition and motion estima-
tion components not only help each other, but also get feedback from the high-level
activity recognition results for improved recognition. For example, by observing a
person pulling an object in an airport environment, their system was able to deduce
that it is the activity of ‘a person carrying a suitcase’ and provide feedback that
the object in the scene is a ‘suitcase’. With experiments, they have shown that
the feedback generated by the high-level activity recognitions may benefit object
recognition, motion estimation, and low-level tracking of objects.

4.2 Recognition of group activities

Group activities are the activities whose actors are one or more conceptual groups.
‘A group of soldiers marching’ and ‘a group of persons carrying a large object’ are
examples of simple group activities. In order to recognize group activities, the anal-
ysis of activities of individuals as well as their overall relations becomes essential.
In this subsection, we discuss the recognition approaches on group activities, while
focusing on the types of activities that they have recognized. There are various
types of group activities and most of the works specialize in recognizing a partic-
ular type among them. Figure 14 illustrates example snapshots of various group
activities.

First of all, researchers have focused on the recognition of group activities where
each group member has its own role different from the others [Cupillard et al.
2002; Gong and Xiang 2003; Lv et al. 2004; Zhang et al. 2006; Dai et al. 2008].
The goal of these approaches is to recognize an activity of a single group with a
limited number of members who exhibit non-uniform behaviors. A group activity of
‘presentation’ with a fixed number of participants in a meeting room is an example
of this type: the presenter will be ‘talking’ while the other members will be ‘taking
notes’, ‘asking questions’, and/or ‘listening’. For this type of group activity, the
system must recognize activities of each individual member and then analyze their
structures. By nature, most of these approaches are hierarchical approaches since
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Fig. 14. This figure shows example group activities from Ryoo and Aggarwal [2008]’s dataset.

From left to right, figures are the snapshots of group activities of ‘group carrying’, ‘group stealing’
in an office, ‘group stealing’ in a shop, ‘group fighting’, and ‘group arresting’. ‘Group stealing’

indicates a situation which a thief takes an object while the other thieves are distracting its owners.

there exist at least two-levels of activities: activities of the group and activities of
individual persons. Statistical hierarchical approaches have been especially popular,
which use state models that we discussed in Subsection 3.1. Essentially, this type
of group activity is equivalent to multi-agent interactions recognized by [Intille and
Bobick 1999; Ivanov and Bobick 2000; Vu et al. 2003; Nevatia et al. 2003; Joo and
Chellappa 2006; Ryoo and Aggarwal 2007].

Cupillard et al. [2002] have recognized a group activity using a finite state ma-
chine, which is equivalent to a fully observable Markov model. They have used
multiple cameras, and were able to recognize an activity ‘a group is fighting’ which
essentially is intra-group fighting of a group composed of two members. Similarly,
as presented in Subsection 3.1, Gong and Xiang [2003] used variations of dynamic
Bayesian networks to recognize group activities. With their system, they have rec-
ognized ‘a group of trucks loading (or unloading) baggage on an airplane’ which
is a group activity of a fixed number of trucks and an airplane. Zhang et al.
[2006] recognized a group activity occurring in a meeting room using DBNs, sim-
ilar to [Gong and Xiang 2003]. Sequentially organized group activities including
‘monologues’, ‘discussion’, ‘presentation’, and ‘note-taking’ have been successfully
recognized. Similarly, Dai et al. [2008] have recognized ‘break’, ‘presentation’, and
‘discussion’ using DBNs with hierarchical structures.

The second type of group activity is the activities which are characterized by the
overall motion of entire group members. A group of people ‘parading’ or ‘marching’
is a typical example of this type. In contrast to the first type of group activity where
the individual activities of specific members are important, the analysis of overall
motion and formation changes of entire group members are important for the second
type of group activity. By their nature, single-layered approaches are appropriate
for their recognition since the entire motion of group members must be considered
simultaneously [Vaswani et al. 2003; Khan and Shah 2005].

Vaswani et al. [2003] have recognized group activities of people interacting with
an airplane. Their approach corresponds to the category of single-layered exemplar-
based sequential approaches that we presented in Subsubsection 2.1.3. They have
represented a group activity as a shape change over time frames. At each frame,
they have extracted k point objects, and constructed a polygon by treating the
extracted points as corners. The points are tracked, and the dynamics of shape
changes following the statistical shape theory are maintained. Their system was
able to distinguish normal and abnormal activities by comparing the activity shape
extracted from an input with a maintained model in a tangent space. Similarly,
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Khan and Shah [2005] have recognized a group of people ‘parading’ by analyzing
the overall motion of group members. Their approach is a single-layered space-
time approach using trajectory features, discussed in Subsubsection 2.1.2. They
have extracted the trajectory of each group member, and analyzed their activities
by fitting a 3-D polygon to check the rigidity formation of the group.

Finally, Ryoo and Aggarwal [2008] have developed a general representation and
recognition methodology that is able to handle various types of group activities.
Their approach is a description-based approach (Subsection 3.3), and various classes
of group activities including group actions (e.g. marching), group-group interac-
tions (e.g. group stealing), group-persons interactions (e.g. march by signal), and
intra-group interactions (e.g. intra-group fighting) have been represented and rec-
ognized with their system. They took advantage of the universal (∀) and existential
(∃) quantifiers to describe sub-events (usually activities of individuals) that need
to be performed by any one member of a group or by all members of the group.
By attaching the universal and existential quantifiers to the participating group
members, their system was able to represent most of group activities that previous
researchers have recognized. The first class of activities that we discussed above is
represented by attaching an existential quantifier to each actor of the group activity.
The second class of activities is represented by applying the universal quantifier and
by posing spatial constraints to the group. In addition, high-level group activities
with complex structures that the previous methods had difficulty representing and
recognizing, such as ‘a thief stealing an object while other thieves are distracting
the owners’ or ‘policemen arresting a group of criminals’, have successfully been
represented and recognized with their system.

5. DATASETS AND REAL-TIME APPLICATIONS

In this section, we discuss public datasets available for the performance evaluation
of the approaches, and review real-time human activity recognition systems.

5.1 Datasets

Public datasets provide common criterion to measure and compare accuracies of
proposed approaches. Therefore, a construction of a dataset containing videos of
human activities plays a vital role in the advancement of human activity recognition
research. In this subsection, we describe the existing human activity datasets which
are currently available, and discuss the characteristics of the datasets. We also
compare the performance of the systems tested on an identical dataset.

Existing datasets that have been made publicly available can be categorized into
three groups as follows. The first type of datasets includes the KTH dataset [Schuldt
et al. 2004] and the Weizmann dataset [Blank et al. 2005], which are designed to
test general purpose action recognition systems academically. They contain videos
of different participants performing simple actions such as ‘walking’ and ‘waving’,
which are taken by the authors in a controlled environment. The second type is
a class of more application-oriented datasets obtained from realistic environments
(e.g. airport). The PETS datasets containing activities like ‘baggage stealing’ and
‘fighting’ are typical examples of this type, targeted for surveillance applications.
In addition, datasets collected from real video medias such as TV broadcasts and
movies have been constructed and presented recently.
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Fig. 15. Example snapshots from the KTH dataset [Schuldt et al. 2004] ( c©2004 IEEE).

5.1.1 Action recognition datasets. A large number of researchers have tested
their system on the KTH dataset [Schuldt et al. 2004; Dollar et al. 2005; Jiang
et al. 2006; Niebles et al. 2006; Yeo et al. 2006; Ke et al. 2007; Kim et al. 2007;
Jhuang et al. 2007; Savarese et al. 2008; Laptev et al. 2008; Liu and Shah 2008;
Bregonzio et al. 2009; Rapantzikos et al. 2009; Ryoo and Aggarwal 2009b] and
the Weizmann dataset [Blank et al. 2005; Niebles et al. 2006; Scovanner et al.
2007; Rodriguez et al. 2008; Bregonzio et al. 2009]. The KTH dataset is a large
scale dataset which contains 2391 videos of six actions performed by 25 subjects.
‘Walking’, ‘jogging’, ‘running’, ‘boxing’, ‘hand waving’, and ‘hand clapping’ are the
six actions the dataset contains (Figure 14). Videos are taken at slightly different
scales with various backgrounds in indoor and outdoor environments (yet mostly
uniform backgrounds). Each video contains repeated executions of a single action
in a resolution of 160*120, 25fps. Similarly, the Weizmann dataset consists of 10
action categories with 9 people, resulting in 90 videos. In the Weizmann dataset, a
static and simple background is used throughout the videos. Simple human actions
of ‘running’, ‘walking’, ‘jumping-jack’, ‘jumping forward on two legs’, ‘jumping in
place on two legs’, ‘galloping sideways’, ‘waving one hand’, ‘waving two hand’, and
‘bending’ are performed by the actors. The resolutions of the videos are 180*144,
25fps. Both dataset are composed of relatively simple action-level activities, and
only one participant appears in the scene.

What we must note is that these datasets are designed to verify the ‘classifica-
tion’ ability of the systems on simple actions. Each video of the datasets contains
executions of only one simple action, performed by a single actor. That is, entire
motion-related features extracted from each video corresponds to a single action,
and the goal is to identify the label of the video while knowing that the video belongs
to one of a limited number of known action classes. Further, all actions in both
datasets except for the ‘bend’ action of the Weizmann dataset are periodic actions
(e.g. walking), making the videos suitable for action-level classification systems.

Because of its nature, methodologies utilizing spatio-temporal local features (Sec-
tion 2.1.3) have been popularly tested. As discussed in previous sections, these
approaches do not require background subtraction and are robust to scale changes.
Further, they are particularly suitable for recognition of periodic actions, since
spatio-temporal features will be extracted repeatedly from the periodic actions.
Figure 16 compares the classification accuracies of the systems. The X axis cor-
responds to the time of the publication, while the Y axis shows the classification
performance of the systems. Most of the systems tested on the Weizmann dataset
have obtained successful results, mainly because of the simplicity of the dataset.
Particularly, [Blank et al. 2005; Niebles et al. 2006; Rodriguez et al. 2008; Bregonzio
et al. 2009] have obtained more than 0.95 classification accuracy.
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Fig. 16. The classification accuracies of various systems tested on the KTH dataset. The X
axis corresponds to the time of publications. Only the results of the systems with the common

experimental settings, the original 16 training-9 testing setting [Schuldt et al. 2004; Laptev et

al. 2008] or the leave-one actor-out cross validation setting (i.e. 25-fold cross validation), are
shown. Results of other systems using non-trivial settings, such as Wong et al. [2007]’s system

tested with 100-fold cross validations, Kim et al. [2007]’s system using manually labeled bounding

boxes, and Jhuang et al. [2007]’s system tested with the subsets, are not presented. The results
of [Niebles et al. 2006; Savarese et al. 2008] are from the system trained with unlabeled data (i.e.

unsupervised learning). [Dollar et al. 2005; Niebles et al. 2006; Savarese et al. 2008; Ryoo and

Aggarwal 2009b] used the same cuboid features, and most of the other systems developed their
own features to recognize the actions.

5.1.2 Surveillance datasets. On the other hands, the PETS datasets (i.e. the
datasets provided at the PETS workshops on 2004, 2006, 2007) and other similar
datasets including the i-Lids dataset are composed of realistic videos in uncontrolled
environments, such as crowded subway stations and airports. Their camera view
points are similar to those of typical CCTVs, and even multiple camera view points
are provided in some of the datasets. Cameras are fixed, implying that the back-
grounds are static and the scales of persons are mostly constant. Multiple persons
and objects appear in the scene simultaneously, and occlusion among them occurs
frequently. The goal of these surveillance videos is to test the ability of recognition
systems to analyze realistic and specific (e.g. ‘baggage abandonment’ and ‘baggage
theft’) activities, which are of practical interests. These datasets are closely related
to real-time applications, which we will discuss in the following subsection.

The PETS 2004 dataset (also known as the CAVIAR dataset) contains 6 cate-
gories of activities where each category is composed of one or more actions: ‘walk-
ing’, ‘browsing’, ‘resting-slumping-fainting’, ‘leaving bags behind’, ‘people meeting,
walking together, and splitting up’, and ‘fighting’. Each class has 3 to 6 videos,
with a total of 28 videos. Videos are of the 384*288 spatial resolution, 25fps. Back-
ground images are provided, and the videos were taken in a shop environment. It
is a single view-point dataset (i.e. only one camera was installed).

In the PETS 2006 dataset, 7 long video sequences were provided from every one
of the 4 different view points. The PETS 2006 dataset focused on the baggage aban-
donment problem: each sequence contains an event in which a bag is abandoned in
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a train station. Either one person or two persons participated in the activity, and
several other pedestrians were presented in the scene. All 4 cameras have a high
spatial resolution of 768*576 with 25 fps. The PETS 2007 have a similar setup to
the PETS 2006. The videos were taken in an airport hall with 4 cameras, providing
8 executions of human activities. They focused on human-baggage interactions: 2
sequences of general ‘loitering’, 4 sequences of ‘baggage theft’, and 2 sequences of
‘baggage abandonment’ similar to those of the PETS 2006 are provided. The resolu-
tion of the images are identical to the PETS 2006. Actors, objects, and pedestrians
were severely occluded in the videos.

Similar to the PETS datasets, the recently introduced i-Lids dataset focuses on
the baggage abandonment problem. Videos were taken from a single view point in
a London subway station, in a crowded environment. The videos not only contain
persons and objects, but also a moving subway train in which people get out and get
in. Humans and objects are severely occluded by themselves, and pedestrians were
easily occluded by pillars in the station. Three videos were provided for training
and validation purposes, and a lengthy video containing 6 baggage abandonment
activities were given for the testing. Videos have the resolution of 720*576 with 25
fps. They had a real-time abandoned baggage detection competition in AVSS 2007
conference with the dataset [Venetianer et al. 2007; Bhargava et al. 2007].

Several works testing their system on these surveillance datasets have been pub-
lished [Lv et al. 2004; Kitani et al. 2005; Ribeiro et al. 2007]. In contrast to the
datasets mentioned in 5.1.1, these datasets are motivated by the practical needs
for the construction of surveillance systems for public safety. They provide more
realistic videos in practical environments. However, they lack generality in a cer-
tain aspect, since they are highly oriented toward surveillance applications. That
is, they are focused on particular types of activities.

5.1.3 Movie datasets. Movie datasets are challenging datasets obtained from
real movie videos (or from TV broadcasts). Unlike the datasets of 5.1.1, they are not
taken in a controlled environment. They are different from the datasets of 5.1.2 as
well, since camera view points are moving frequently, and background information
is seldom provided. Most of the movie datasets [Ke et al. 2007; Laptev and Perez
2007; Laptev et al. 2008; Rodriguez et al. 2008] focused on relatively simple actions
such as ‘kissing’ and ‘hitting’. Even though the actions are simple, each video of an
action exhibits person dependent, view-point dependent, and situation dependent
variations. Thus, the major challenge is in handling those variations rather than
recognizing complex structured activities, and space-time feature-based approaches
have been applied to solve the problem.

5.2 Real-time applications

In this subsection, we review several computer vision systems designed to recog-
nize activities in real-time. Even though the approaches that we have discussed
in the previous sections have shown results on various types of human activities,
most of the proposed algorithms are far from being real-time. In order for an
activity recognition methodology to be applicable for real-world applications in-
cluding surveillance systems, human-computer interfaces, intelligent robots, and
autonomous vehicles, this computational gap must be overcome.
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Recently, various real-time human activity recognition systems have been pro-
posed, and we review some of them here. The general idea of most of the approaches
is to increase the efficiency of the algorithms by simplifying them. They sacrifice
the detailed analysis of activities and focus on simple but effective features. Lv
et al. [2004] used a traditional Bayesian posterior probability calculation for the
recognition of actions. In order to detect activities reliably without spending too
much computational cost, their approach searches for an optimal set of features
from a large number of features. They have proposed a dynamic programming
algorithm to find a set of features that maximizes the detection accuracy on the
training data. PETS 2004 dataset has been used for the testing.

Yeo et al. [2006] focused on a frame-to-frame similarity measurement based on
optical flow calculations. The key to their system is the fact that the modern
video compression technology takes advantage of the optical flows to encode the
videos. That is, optical flows are naturally embedded in those videos, and are
easily extractable. The similarity between frames are measured based on the optical
flow distribution, and they are aggregated to measure the similarities between two
videos. Their approach can be viewed as a sequential exemplar-based approach
similar to [Efros et al. 2003], and the KTH dataset has been applied to test their
system.

Li et al. [2008]’s approach is a space-time trajectory analysis approach. They used
the principle component analysis (PCA) to compress the trajectories from a high
dimensional space to a low dimension. Several learning algorithms were applied on
these low-dimensional trajectories, and the Gaussian mixture model was adopted
for the classification. The reduction in the dimensionality provided them the ability
to process videos in real-time. Their system was also tested with the KTH dataset.

Notably, Rofouei et al. [2008] have utilized graphical processing units (GPUs) of
computer systems to enable the real-time recognition of human activities. Instead
of making the algorithms simpler, they focused on the fact that modern hardwares
are able to support computationally expensive processing. The state-of-the-art
graphic cards are composed of GPUs with many cores, suggesting that they are
able to compute repetitive computations in parallel. This implies that they are
suitable for the parallel processing of many computer vision algorithms analyzing
images and videos (e.g. a GPU-based SIFT feature extraction). Rofouei et al.
[2008] have designed a GPU-version algorithm of [Dollar et al. 2005], which is 50
times faster than the CPU implementation of the algorithm without sacrificing the
performance. They have illustrated the potential that the use of GPUs (or multi-
core CPUs) will greatly improve the speed of computer vision systems, enabling
the real-time implementation of existing activity recognition algorithms.

6. CONCLUSION

Computer recognition of human activities is an important area of research in com-
puter vision with applications in many diverse fields. The application to surveil-
lance is natural in today’s environment where the tracking and monitoring people
is becoming an integral part of everyday activities. Other applications include
human-computer interaction, biometrics based on gait or face, and hand and face
gesture recognition. We have provided an overview of the current approaches to
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human activity recognition. The approaches are diverse and they are yielding a
spectrum of results. The senior author of the paper has been involved in the study
of motion since the early 1970s [Aggarwal and Duda 1975] and human activity
recognition since the early 1980s [Webb and Aggarwal 1982]. The impetus for the
study of human motion and human activities was provided by Johansson [1975]’s
pioneering work in the early 1970’s. Human activity research came to the forefront
in the early 1990’s.

In this review, we have summarized the methodologies that have previously been
explored for the recognition of human activities, and discussed advantages and dis-
advantages of those approaches. An approach-based taxonomy is designed and ap-
plied to categorize previous works. We have discussed non-hierarchical approaches
developed for the recognition of gestures and actions as well as hierarchical ap-
proaches for the analysis of high-level interactions between multiple humans and
objects. Non-hierarchical approaches are again divided into space-time approaches
and sequential approaches, and we have discussed the similarities and differences
of the two approaches thoroughly. Previous publications following statistical, syn-
tactic, and description-based approaches have been compared for hierarchical ap-
proaches.

In 1999, human activity recognition was in its infancy as Aggarwal and Cai [1999]
pointed out. A significant amount of progress on human activity recognition has
been made in the past 10 years, but it is still far from being an off the shelf tech-
nology. We are at a stage where experimental systems are deployed at airports
and other public places. It is likely that more and more, such systems will be
deployed. There is a strong interaction between the surveillance-authorities and
computer vision researchers. For example, Professor Mubarak Shah of the Univer-
sity of Central Florida and the Orlando Police Department are joining forces to
develop a system to monitor downtown Orlando: http://server.cs.ucf.edu/˜vision/
projects/Knight/Knight.html.

Further, today’s environment for human activity recognition is significantly dif-
ferent from the scenario at the end of the last decade. The cameras were mostly
fixed cameras and without pan-tilt-zoom adjustments. Today’s cameras may be
mounted on several types of moving platforms ranging from a moving car or a
truck to an unmanned aerial vehicle (UAV). A global positioning system may be
attached to the camera system to pin-point its location. The recognition of ac-
tivity from a moving platform poses many more challenges. Noise, tracking, and
segmentation issues arising out of stabilization of video add to the difficulty of the
problem of the recognition of activities. Tracking is a difficult problem though ani-
mals and human do it almost effortlessly. If the tracking algorithm does not extract
the object of the focus of attention, recognition of the activity being performed be-
comes enormously more difficult. Designing an activity recognition system which
is able to compensate for such low-level failures in those environments (i.e. moving
platforms) is an extremely challenging task.

The future direction of research is obviously encouraged and dictated by appli-
cations. The pressing applications are the surveillance and monitoring of public
facilities like train stations, underground subways or airports, monitoring patients
in a hospital environment or other health care facilities, monitoring activities in the
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context of UAV surveillance, and other similar applications. All of these applica-
tions are trying to understand the activities of an individual or the activities of a
crowd as a whole and as subgroups. These problems will occupy us for a number
of years and several generations of graduate students.

As pointed out above, segmenting and tracking multiple persons in videos is
harder than it appears. This difficulty is partly due to poor lighting, crowded
environments, noisy images, and camera movements. For example, lighting in sub-
ways is almost universally poor. Further, it is difficult to segment individuals or
their body parts when occlusion is present in the scene. Alternative approaches to
segmenting body parts based on analyzing 3-D XYT volumes by extracting gross
features are being developed. In particular, 3-D local patch features described in
terms of histogram of gradient (HOG) and/or histogram of optical flow (HOOF),
such as cuboids [Dollar et al. 2005] and 3-D SIFT [Scovanner et al. 2007], are gain-
ing popularity. These approaches are motivated by the success of object recognition
using 2-D local descriptors (e.g. SIFT [Lowe 1999]).

However, they involve long feature vectors obtained from a large 3-D XYT volume
created by concatenating image frames, and are likely to have an impact on real time
analysis. The 3-D search space is much larger than its 2-D versions. Further, the
existing local space-time features generally require a non-textured background for
reliable recognition, such as the ones in the KTH and Weizmann datasets [Schuldt
et al. 2004; Blank et al. 2005]. Also, a limited amount of work has been published on
the 3-D feature-based approaches for analysis of complex human activities. What
one needs is an approach which exploits the easy computation of SIFT, HOG, and
HOOF operators and avoids the difficulties of segmentation of body parts and/or
combines the two approaches in a meaningful way.

One promising direction for enabling real-time implementation is the study of
hardware supports. Rofouei et al. [2008] have implemented a GPU-based version
of the cuboid feature extractor, utilizing graphical processing units (GPUs) with
tens of cores running thousands of threads. The GPU-version turned out to be
50 times faster than the CPU counterpart of it, while obtaining the same results.
Modern CPUs and GPUs are composed of multiple cores, and the number of cores
is likely to continually increase for the next few years, suggesting computer vision
researchers to explore the utilization of them.

There are a number of other innovative approaches being explored. One such
approach is exploiting the fact that images, high dimensional signals, are possibly
residing in low dimensional manifolds. Several researchers are pursuing issues relat-
ing to characterizing the manifolds and exploring the relationships of the manifolds
of different activities of the same person or the same activity of different persons
[Veeraraghavan et al. 2006]. The temporal segmentation of activities and gestures
is still a difficult issue. The inability to simultaneously register rigid and non-rigid
parts of a face (in general parts of the human body) contributes to this difficulty. In
certain activities, parts of the body move fairly rigidly whereas other parts undergo
non-rigid motion, for example, the movement of the head/face. Shape deformations
may be modeled as a linear combination of unknown shape bases [la Torre Frade
et al. 2007], providing another approach to the recognition of facial expressions.

Hierarchical recognition approaches are being studied intensively especially for
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the recognition of complex multi-person activities. Particularly, description-based
approaches are gaining an increasing amount of popularity because of their ability
to represent and recognize human interactions with complex spatio-temporal struc-
tures. Activities with structured scenarios (e.g. most of surveillance scenarios)
require hierarchical approaches, and they are showing the potential to make a reli-
able decision probabilistically. In the near future, hierarchical approaches together
with strong action-level detectors such as the ones mentioned above will be ex-
plored for reliable recognition of complex activities. As we have covered in previous
sections, hierarchical approaches have their advantages in recognition of high-level
activities performed by multiple persons, and they must be explored further in the
future to support demands from surveillance systems and other applications.

The above areas of research, the space-time feature-based approaches, manifold
learning, rigid/non-rigid motion analysis, and hierarchical approaches briefly men-
tioned are but a small glimpse into the large number of approaches being pursued
today. Hopefully, a review in another ten years will document significant progress
in human activity recognition to the extent that off the shelf systems would be
readily available.
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