

Variations of a Hough-Voting Action Recognition System

Daniel Waltisberg, Angela Yao, Juergen Gall, Luc Van Gool

Motivation

Monitoring children and elderly people

Intelligent surveillance systems

Overview

- 1. Hough-Voting Framework for Action Recognition
- 2. Aerial View Challenge
- 3. Interaction Challenge
- 4. Summary

Hough-Voting Framework for Action Recognition

- Hough Transform used to detect lines
 - → Generalized Hough Transform to detect arbitrary shapes
 - \rightarrow Extension for action recognition
- Straight-forward extension is too high-dimensional to handle: 3t + 3
- Split into two stages

 Localize: track the person
 Classify: label the action

Localization

detection hypotheses

particle filtering

normalize tracks

Classification - Training

- Extract randomly sampled 3D patches (e.g 25x25x5)
- Build random tree from the top
 - Create pool of binary tests

 Select binary test which splits with minimal class uncertainty

$$U_1(A) = -|A| \cdot \sum_c p_c \ln(p_c)$$

or center offset uncertainty

$$U_2(A) = \sum_i ||\boldsymbol{d}_i - \overline{\boldsymbol{d}_A}||^2$$

shared features across classes

. . .

Classification - Testing

- Extract densely sampled 3D patches
- Pass patches through tree
- Leaves are used to cast votes in the 4D space (action label, center in time and space)

Aerial View Challenge

- Foreground masks were used to extract the tracks of the people
- Hough Voting Framework was applied directly
- The following six feature channels were used:
 - greyscale intensity
 - absolute value of x, y and time derivatives
 - absolute value of optical flow in x and y

Aerial View Challenge

Performance of 95.3 %

Apply Hough-voting to both people

Shake Hands

Hug

Asymmetric

Punch

Point

ETH Zürich

- Apply Hough-voting to both people → probabilistic measure for seven classes and each person
- Use combination rules, e.g. the min rule
- Representation with Decision Profiles

Symmetric Actions

Asymmetric Actions

Apply combination rule

Person1	Shake	Hug	Punch	Victim	Kick	Victim	
Person2	Shake	Hug	Victim	Punch	Victim	Kick	

Similar results for min, product and sum rule

	Min	Max	Product	Sum
Set 1	0.83	0.55	0.87	0.88
Set 2	0.8	0.42	0.77	0.77

Set1 using min rule

- Applying the Hough-voting to both people directly gives a performance of only 48.3 %
- The presented approach achieves a performance improvement more than 30 %
- Explanation: Much of the movement of the people is caught when applying the Hough-voting to both people.

Summary

Hough-Voting framework for action recognition

Aerial View Challenge

95.3%

Interaction Challenge

۵	Decisio	on Pro	files	Asym	metric Act	ions	
Person1	Shake	Hug	Punch	Victim	Kick	Victim	
Person2	Shake	Hug	Victim	Punch	Victim	Kick	

Thursday, September 02, 2010

ETH Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Questions?