

Abstract

The paper presents a system that recognizes humans

interacting with objects. We delineate a new framework
that integrates object recognition, motion estimation, and
semantic-level recognition for the reliable recognition of
hierarchical human-object interactions. The framework is
designed to integrate recognition decisions made by each
component, and to probabilistically compensate for the
failure of the components with the use of the decisions
made by the other components. As a result, human-object
interactions in an airport-like environment, such as ‘a
person carrying a baggage’, ‘a person leaving his/her
baggage’, or ‘a person snatching another's baggage’, are
recognized. The experimental results show that not only the
performance of the final activity recognition is superior to
that of previous approaches, but also the accuracy of the
object recognition and the motion estimation increases
using feedback from the semantic layer. Several real
examples illustrate the superior performance in
recognition and semantic description of occurring events.

1. Introduction
Surveillance cameras are becoming popular these days.

Increased availability of CCTVs and other monitoring
equipments in public places has led to increased demand of
automated high-level surveillance systems. Human
activities that these types of systems would like to
recognize are not the simple gestures or actions of a single
person. Rather, the goal of these systems is to analyze and
document complicated ongoing human activities where
humans and several objects drawn from multiple categories
participate in activities. Most human activities in public
places involve objects, and thus a system for the
recognition of high-level human-object interactions is
essential for constructing automated surveillance systems,
smart spaces, and human-computer interaction systems in
public. For example, in the case of the surveillance system
for an airport environment, a system needs to consider
object information as well as its movements to analyze and

distinguish ‘a person simply carrying his/her suitcase’ from
‘a person snatching another’s suitcase in the absence of the
person’. In this paper, we present a novel framework for the
recognition of human-object interactions composed of 3
main components: the component for object recognition,
motion estimation, and semantic-level activity recognition.

Several prior researchers have considered recognition of
hierarchical human-object interactions. However, a system
that integrates the object recognition, the motion estimation,
and the semantic-level analysis for the reliable recognition
of hierarchical human-object interactions has not been
studied in depth previously. Previous syntactic approaches
[2,5] were able to recognize human activities with objects,
but they were limited on recognizing semantically
complicated activities with concurrent sub-events. Nevatia
et al. [6] also presented a system to recognize humans
interacting with objects. Their system was able to recognize
human-object interactions with three levels of hierarchy,
but the overall recognition process was strictly dependent
on the success of its object recognitions. Ryoo and
Aggarwal [8]’s system was general enough to recognize
continued human activities with any levels of hierarchy, but
did not attempt to recognize human activities with objects.
On the other hands, Moore et al. [3] constructed the system
that compensates for the failures of the object classification
with the recognition results of simple actions. Even though
the actions their system recognized were simple actions of a
single person, their system was able to cope with failures of
the object recognition or the action recognition component.

The recognition framework proposed in this paper
addresses three key issues, adopting the advantages of
previous systems and improving the drawbacks of them.
First of all, as mentioned above, the system must be able to
recognize human activities with several objects drawn from
multiple categories. This suggests that the system needs to
consider the object classification problem as well as the
recognition of object motion. Secondly, the system must
aim to recognize high-level activities, which are usually
hierarchical. Finally, the system must recognize
human-object interactions reliably and correctly even when
one of its components, object recognition for example, fails.
Constructing a system that achieves three goals
simultaneously is a challenging problem.

CVPR-SLAM
2007

2nd International Workshop on Semantic Learning Applications in Multimedia
in conjunction with CVPR, Minneapolis, MN, June 2007 (CVPR-SLAM ‘07)

CVPR-SLAM
2007

Hierarchical Recognition of Human Activities Interacting with Objects

M. S. Ryoo and J. K. Aggarwal

Computer & Vision Research Center / Department of ECE
The University of Texas at Austin

{mryoo, aggarwaljk}@mail.utexas.edu

We have constructed a probabilistic framework where
the three main components (object recognition, motion
estimation, and semantic-level activity recognition)
complement each other to handle noise and the
uncertainties of inputs. Interactions among components
play a key role in achieving above-mentioned three goals.
We focus on the fact that an object has its own
functionalities and thus different types of human activities
involve different types of objects. Detected objects and
motions enable the semantic layer to recognize high-level
activities, while the semantic-level analysis of an activity
may help the object layer or the motion layer to recover
from failure by providing feedback.

Our focus in this paper is on the semantic layer, which
recognizes high-level human-object interactions. We
present a reliable recognition algorithm that is able to cope
with object recognition or motion estimation errors. An
algorithm for detecting the time interval of occurring
activities and calculating the probability associated with
that interval has been developed. The ability to cope with
errors not only increases the recognition performance, but
also enables the semantic layer to provide feedback to the
other layers. For example, if the system recognized an
activity ‘person carrying his/her suitcase’, then the object
that participated in that activity must be a suitcase.

We introduce the overall framework in section 2 with
detailed explanations of the segmentation layer, the object
layer and the motion layer. Section 3 describes formal
language-like representation that our semantic layer uses to
recognize human-object interactions. Actual recognition
algorithm is presented in section 4, where we present
mechanism to associate probability with time intervals to
cope with erroneous inputs. Experimental results are shown
in section 5. The system recognizes high-level
human-object interactions occurring in an airport-like
environment. The conclusions are stated in section 6.

2. Framework
For the reliable recognition of human-object interactions,

we designed a framework composed of four layers: the
segmentation layer, the object layer, the motion layer, and
the semantic layer. Each of these four layers has its own
functionalities. The role of the segmentation layer is to
segment and track objects in the scene using pixel-level and
blob-level processing. The object layer identifies categories
of segmented objects, while the motion layer estimates
movements of objects. The results of the object layer and
the motion layer are given to the semantic layer, which
takes advantage of detected objects and their motion in
order to recognize the final high-level activity. In the
semantic layer, the activities are recognized hierarchically
from most simple activities, i.e. atomic actions, to
composite human-object interactions.

Our semantic layer represents a high-level activity in

terms of its sub-events using a language-like representation
scheme, and probabilistically recognizes the represented
activity with a hierarchical matching algorithm. Our
semantic layer has two significant advantages over
traditional statistical methods such as dynamic Bayesian
networks (DBNs) that has been commonly used for the
activity recognition [7]. First, our semantic layer is able to
deal with high-level activities composed of sub-events with
various types of temporal relationships. DBNs are able to
model activities with sequential sub-events, but they lack
the ability to model sub-events with concurrent
relationships such as ‘sub-event1 must occur during
sub-event2’ or ‘sub-event1 and sub-event2 must occur
exactly at the same time’. Secondly, our semantic layer
requires significantly less amount of training data to learn
high-level activities, since the system incorporates expert
knowledge on temporal structure of activities instead of
learning them solely from the training data.

Furthermore, unlike most previous systems, the layers in
our framework are designed to influence each other. The
object layer classifies objects not only based on features
extracted in the segmentation layer, but also by the decision
made by the motion layer and the semantic layer. Similarly,
the motion layer estimates movements of objects using
information from the segmentation layer, the object layer,
and the semantic layer. High-level activities are recognized
in the semantic layer, using the outputs of the object
recognition and the motion estimation. A failure of
recognition in the object layer or the motion layer does not
imply the failure of recognition of the semantic layer. As a
consequence, the semantic layer is able to help the other
layers via feedback when they fail in recognition. The
overall framework of our system is shown in the figure 1.

2.1. Segmentation layer
Algorithms for background subtraction, blob detection,

and blob tracking are used for our segmentation layer. Our
segmentation layer basically segments a cluster of

Figure 1: Details of the framework for recognition of high-level
human-object interactions.

G

O

Primitive

Input

G’
Segmenta
tion
layer

Motion layer

Object layer

Semantic
layer

Feedback on
motion

Feedback on
objects

Io

Ip

G’

O’

Primitive
O’

separated blobs as one object. However, when a person is
carrying objects such as suitcases or boxes, object blobs
and human blobs form one large cluster rather than two
separated clusters. In order to segment objects such as
suitcases or boxes from the person who is carrying it, a
blob-based version of Haritaoglu et al.’s algorithm [4] is
used. Their algorithm uses symmetry and periodicity
information of people to segment objects from people.

As a result of the segmentation layer, the system
estimates positions, shapes, and movements of the objects
in the scene.

2.2. Object layer and motion layer
The object layer and the motion layer are designed to

take advantage of decisions made by each other. Our
intention is to make the recognition process of objects and
motions more reliable by considering the relationship
between objects and their motions. However, this design
principle generates a cycle in the process. We have to know
the output of the object layer in order to recognize the
motions. The recognition process of objects needs outputs
of the motion layer.

The system constructed by Moore et al. [3] avoids this
cycle between the object layer and the motion layer by
giving a priority to the decision of the object layer to that of
the motion layer: In most situations, objects are decided
first and motions are estimated based on the recognized
object. Only when the object layer failed to identify an
object, the motion layer is able to help the object layer.
There is no cycle in this process, since the system always
tries to recognize the object first. The system assumes that
the object layer either correctly recognizes an object or
labels it as an unclear object.

Our system is designed to overcome this cycle of process
by constructing a primitive object module and motion
module inside the object layer and the motion layer. The
primitive modules are basic classifiers that make a decision
solely based on visual observations, without outputs from
each other. The two primitive modules are independent.
The object layer and the motion layer avoid the cycle of
process by treating the primitive module of each other as an
estimation of decision of each other. Any of the previously
developed object recognition and motions estimation
techniques can be safely adopted for each module.

Primitive object module: We use a k-nearest neighbor
(k-NN) classifier to recognize objects. The classifier uses
six features that have been used commonly for the object
classification. Area, height, width, angle of major axis,
compactness, and mean color are the features used to
classify objects.

Primitive motion module: A hidden Markov model
(HMM) is constructed for each motion. HMMs have been

widely used for gesture recognition [9]. A HMM treats
features extracted from each object, such as ‘change of the
center of mass’ in our case, as ‘observations’ generated by
the hidden nodes of the model. Motion is detected at local
maxima of the probability of a HMM generated current
sequence of observations. A forward algorithm of HMM is
used to detect the ending time of a motion, and a backward
algorithm is used to detect the starting time.

A naïve Bayesian classifier is constructed for each layer
to make the final decision. The object layer and the motion
layer use each other’s primitive module to take advantage
of each other. The motion layer estimates object motions
based on its primitive module, the primitive object module
and, feedback from the semantic layer. The object layer
classifies objects using its primitive module, feedback from
the semantic layer, and the entire history of motions
estimated by the primitive motion module. Dotted line of
figure 1 illustrates this process.

3. Semantic layer: representation
In order to recognize high-level human-object

interactions, the system must have knowledge on the
temporal and spatial structure of the human activities that it
desires to recognize. Our approach is to make human’s
conceptual knowledge on human-object interactions
encoded as an activity representation, whose format is
similar to that of a programming language.

We extend Ryoo and Aggarwal’s representation [8] to
represent human-object interactions formally. Their
representation scheme describes a high-level activity based
on its sub-events and their temporal [1], spatial, and logical
relationship. Unlike previous approaches [2,5,7], their
representation scheme is able to represent human activities
composed of sequential and concurrent sub-events. If an
activity has no sub-event, they call it an ‘atomic action’. If
not, they call it ‘composite activity’. In principle,
sub-events of an activity can be any composite activities or
atomic actions that have been represented, suggesting that
the activities are represented hierarchically.

The major extension made in our activity representation
is on the syntax to describe participating objects of
interactions. Similar to their previous work, an atomic
action is represented in terms of the ‘operation triplet’ :
<agent, motion, target>. The difference is that now the
agent and the target is not limited to a person; it can be an
object from a number of categories. In addition, all
participating objects must be specified when representing
composite human activities with objects. The extended
version of CFG-based representation scheme is as follows:

InteractionName(ParameterObjectParticipants) = {
 InteractionDefs,
 InteractionRelationship
};

InteractionDefs specifies the list of sub-events and
InteractionsRelationship specifies necessary relationship
needed among sub-events. ParameterObjectParticipants
are list of all participating objects, which can be described
as ObjectClass ObjectName. For example, the interaction
‘person stealing another’s suitcase’ is as follows:

Steal(Person p1, Suitcase s1, Person p2) = {
 list(def(‘i’, Carry(p1, s1)),
 list(def(‘j’, Stay(s1)), def(‘k’, Carry(p2, s1)))),
 and(and(equals(‘this’, ‘k’),
 and(meets(‘i’, ‘j’), meets(‘j’, ‘k’)))
};
Carry(Person p1, Suitcase s1) = {
 list(list(def(‘mlp’, MoveL(p1)), def(‘mls’, MoveL(s1))),
 list(def(‘mrp’, MoveR(p1)), def(‘mrs’, MoveR(s1)))),
 and(touching(p1, s1),
 or(and(equals(‘this’, ‘mlp’), equals(‘mlp’, ‘mls’)),
 and(equals(‘this’, ‘mrp’), equals(‘mrp’, ‘mrs’))))
};

4. Semantic layer: recognition
In the semantic layer, high-level human-object

interactions are recognized using our new probabilistic
algorithm. The recognition of human-object interactions is
done based on the matching between the language-like
representation of the activities constructed by human users
and the recognition results from the object layer and the
motion layer. Given the detection results of objects and
motions, the semantic layer of the system must detect the
valid combination of objects and motions that matches the
representation of activities with high probability.

4.1. Time interval detection algorithm
A ‘time interval’ is time associated with an occurring

activity, composed of starting time and ending time.
‘Participants’ are all objects which are involved in the
activity. Therefore, recognizing an activity is equivalent to
detecting (participants, time interval) pairs that satisfy the
representation of the activity with high probability. In this
sub-section, we present an algorithm which searches for
combinations of objects and motions in order to detect valid
participants and time intervals of represented activities. We
show that time intervals can be computed based on the
object and motion detection results. The algorithm
presented in this sub-section calculates possible candidate
(participants, time interval) pairs of activities based on
objects and motions detections, while the probability (or
confidence) of them are computed in the sub-section 4.2.

The hierarchy tree of the activity illustrates the process
of our algorithm. The structure of the activity described by
its language-like representation is interpreted into the
hierarchy tree. A node of the hierarchy tree corresponds to
an activity, and an edge specifies which activity is the
sub-event of which activity. If an activity is a sub-event of

another activity, the former becomes a child of the latter in
the hierarchy tree. By definition, all leaf nodes are atomic
actions, while all internal nodes are composite activities.
Particular temporal relationships exist among siblings of
the tree, and spatial relationships exist among objects
associated with siblings. Figure 2 shows the hierarchy tree
of the interaction ‘steal (p1, s1, p2)’.

Our algorithm to recognize human activities essentially
is a hierarchical matching algorithm using the hierarchy
tree. At each node, the system matches the temporal
structure of the activity with time interval detection results
of the sub-events, and checks whether the participant
objects of sub-events satisfy the spatial structure of the
activity or not. Given a combination of (participants, time
interval) pairs where each of them are associated with a
child node, the system checks whether the assignments on
child nodes satisfy necessary spatio-temporal relationship
among them. For each valid combination of (participants,
time interval) assignments on child nodes, the time interval
of the parent node is computed by calculating the range of
the special time interval ‘this’ associated with itself in the
representation. Participants of the parent node can be
calculated based on the participants of sub-events. Each
participant of the parent node corresponds to one (or more)
of the participant of sub-events. Figure 3 shows the pseudo
code of the algorithm.

Searching for valid combinations of a (participants, time
interval) pair assignments is a typical constraint satisfaction
problem. There are multiple candidate assignments for each

Figure 2: Example hierarchy tree of the interaction ‘steal (p1, s1,
p2)’. Dotted boxes are atomic actions. The activity ‘carry’
actually has two more sub-events that correspond to ‘move right’
actions of a person and a suitcase, which has been omitted here.

P Obj: (person p1, suitcase s1) P Obj: (person p2, suitcase s1)

Steal(p1, s1, p2)

Carry(p1, s1)

Parameter Objects:
 (person p1, suitcase s1, person p2)

Carry(p2, s1)

meets meets

MoveL(s1)MoveL(p2)MoveL(s1) MoveL(p1)

Stay(s1)

Recognition results from the object and motion layers

equals equals

child node, and the system must find a valid combination of
them which satisfies spatio-temporal constraints. For
efficiency of our algorithm, we take advantage of the linear
characteristics of the activities. We limit our representation
to not use two identical activities with identical objects as
sub-events of one activity. With this constraint, most of the
activities show linear characteristic; among time intervals
of sub-events associated with identical participants, only
the most recent one is involved in the activity.

The overall process is done bottom-up. Initially, leaf
nodes (i.e. atomic actions) are recognized through
searching for the recognition results of objects and their
movements. Thus, ‘participants’ associated with an atomic
action is identical to a single detected object, and ‘time
intervals’ associated with an atomic action is identical to
those of the detected object’s motions. Once (participants,
time interval) pairs of atomic actions are recognized, other
high-level activities constructed based on the atomic
actions can be recognized bottom-up. At each internal node,
matching is performed between each valid combination of
(participants, time interval) assignments on child nodes and
the spatio-temporal structure needed among them.

When detecting (participants, time interval) pairs for
atomic actions, we do not discard the time intervals of
object motions even when the object label mismatches the
operation triplet with high probability. The penalty for the
mismatch will be covered when calculating the probability
of occurrence of the atomic action in that time interval. The
probability of occurrence of the atomic action will be low if
the object detection result does not match the operation
triplet of the atomic action. The main idea is to let the
probability calculation mechanism decide the mismatch
between the representation of the activity and the
recognition results from the lower layers. The role of the
time interval detection algorithm is to provide as many
valid candidates of time intervals associated with the
activity as possible for the probability calculation system to
take advantage of them.

4.2. Calculating the probability of occurring
activities

The objective of the algorithm presented in this
sub-section is to calculate a probability of an occurring
activity associated with a time interval, given the sequence
of images. If we denote images from frame 1 to T as IT, then
the conditional probability of the activity R occurred in the
time interval <s, e> can be expressed as P(R<s, e> | IT). The
goal of our algorithm is to calculate P(R<s, e> | IT) based on
the recognition results of objects, P(Oi=j | IT) where Oi is
the id of the object and j specifies the category, and the
recognition results of motions, P(Mi

<s, e> =j | IT) where Mi is
the id of the motion and j specifies its category.

In order to calculate probability of a high-level activity,

we use the dependency information between the activity
and its sub-events. The hierarchy tree illustrates
dependencies among the activities similar to the Bayesian
network. Activities associated with child nodes depend on
the activity associated with a parent node. By the definition
of the operation triplets, the object and its motion specified
in an operation triplet depend on that atomic action, i.e. the
leaf node. The main difference between the dependency
among nodes in the hierarchy tree and those in the Bayesian
network is that siblings of the hierarchy tree are not
conditionally independent given the parent node;
sub-events tend to occur together, implying that they are
highly correlated.

We denote a union of sub-events of each element in set S
as Sub(S). When an element ‘a’ of set S does not have any
sub-events, the Sub(S) is defined to be Sub(S-a) ∪ ‘a’.
Then, the probability P(R<s, e> | IT) can be enumerated using
the dependency among nodes, as follows:

() { } { }()()
{ }() { }()()() { }()()

{ }() { }()() { }()()
{ }() { }()() ()

,

1
1

0
1

1
1

0

| |

| |

| |

| , , |

s e T

d T

d
i i d T

i
d

i i T
n

i

P R I P R sub R

P sub R sub sub R P sub R I

P sub R sub R P sub R I

P sub R sub R P a a I

−
+

=
−

+

=

= ∗

∗ ∗

= ∗

= ∗

∏

∏

…

…

where a1, a2, …, an are leaf nodes of the tree and d is the
depth of the tree.

Because of the characteristics of our representation, we
can safely assume that an activity occurs if and only if all of
its sub-events occur. That is, for all set of siblings S in the
tree, P(S | sub(S)) = 1

Therefore, the P(R<s, e> | IT) can be simplified into the
product of conditional probabilities among atomic actions,
objects, and motions. If we assume conditional
independency among recognitions made by the object layer
and the motion layer, the probability P(R<s, e> | IT) is
enumerated as follows:

RECOGNIZE(Activity a) {
 for all sub-events si, list[i] = RECOGNIZE(si);
 for each combination c = (j1, …, jn) where ji∈list[i]
 if (CheckTemporal(c.t)==false) continue;
 else result_t = CalculateThis(c.t);
 for each c.o[i] that is a defined object of a

let all.o[i]k be a object of sub-event that has to
be identical to c.o[i].

 if(o[i]1=o[i]2=…=o[i]n) result_o[i] = o[i]1;
 else continue;
 result.add((result_o, result_t));
 return result;
}

Figure 3: Pseudo code of the hierarchical recognition algorithm,

()
{ }() { }()() ()

()
() ()

() () ()

,

1
1

1
0

1

1 1 1 1 1
,

1 1 1
, 0 0

|

| , , |

1 , , |

, , | , , , , , , , , |

, , | , , , , | |

i i

i i

s e T

d
i i T

n
i

T
n

T
n n n n n

o m
n n

T T
n n n i i

o m i i

P R I

P sub R sub R P a a I

P a a I

P a a o o m m P o o m m I

P a a o o m m P o I P m I

−
+

=

= =

= ∗

= ∗
⎡ ⎤= ∗⎣ ⎦

⎡ ⎤= ∗ ∗⎢ ⎥
⎣ ⎦

∏

∑

∑ ∏ ∏

…

…

… … … … …

… … …

We estimate the probability P(a1, a2, …, an | o1, o2, …,
on, m1, m2, …, mn) using the linear regression with binary
features [o1, o2, …, on, m1, m2, …, mn]. We assume the
P(a1, a2, …, an | o1, o2, …, on, m1, m2, …, mn) to be a
linear function of [o1, o2, …, on, m1, m2, …, mn]. That is,

()
[]

[] []

1 1 1

1 1 1
2

1 1 1 1

, , | , , , ,
, , | , , , ,

, , , , , , , ,

n n n

n n n

n n n n

E P a a o o m m
E a a o o m m

o o m m o o m mα β γ

⎡ ⎤⎣ ⎦
=
≈ + +

… … …
… … …

… … … …

where we estimate parameters α, β, and γ through training.
Number of training samples need for training P(a1, a2, …,
an | o1, o2, …, on, m1, m2, …, mn) is O(n).

4.3. Error handling
In this sub-section, we discuss how our algorithm

handles errors from the segmentation layer, the object layer,
and the motion layer. The semantic layer must have power
to recover from the failures of the segmentation layer, the
object layer, and the motion layer. The segmentation layer
may fail to track to objects, the object layer may misclassify
objects, and the motion layer may misestimate object
motions. The power to handle errors of the lower layers is
not only important for the reliably recognition but also for
providing feedback. The semantic layer must provide
feedback to the layer that made a failure, telling the layer to
“rethink” about the decision it made. In this sub-section, we
present how our recognition algorithm handles those
failures and recognize human-object interactions reliably.

Tracking failure: The segmentation layer may fail to track
objects because of occlusions. For example, when a person
is stealing another’s suitcase, the segmentation layer may
label the suitcase that is being stolen by the thief as a
different suitcase than the initial one. The tracking failure
can be crucial, since our time interval detection algorithm
in 4.1 assumes that all objects are tracked correctly.

In order to cope with tracking failures, we modified the
algorithm presented in sub-section 4.1 and 4.2. Previously,
the algorithm checks whether the object in one frame is
identical to the object in another frame solely based on
tracking results. Now, when detecting the time intervals,
the algorithm considers the object match between the
sub-events probabilistically. That is, in the case of the

stealing interaction, the system calculates the probability
that the suitcase that owner was carrying is identical to the
suitcase that the thief is carrying later. If we denote objects
in sub-events that have to be identical as (oi1, oi2, …, oik),
then the probability of the activity is as follows.

()
()

() () ()

,

1 1 1

1 2
,

0 0 0

|

, , | , , , ,

| |
i i

s e T

n n n
n n n

T T k
o m i i i i i

i i i

P R I

P a a o o m m

P o I P m I P o o o
= = =

⎡ ⎤∗
⎢ ⎥= ⎢ ⎥∗ ∗ = =
⎢ ⎥⎣ ⎦

∑ ∏ ∏ ∏
… … …

…

Object recognition failure: The algorithm presented in
sub-section 4.1 and 4.2 is able to handle object recognition
failures without any modification. Basically, any object
with non-zero probability of being classified into the
desired category will be considered a candidate participant
of the activity. If a time interval is detected treating a
misclassified object as a participant, the probability of the
activity containing the misclassified object will be
calculated accordingly using mechanisms presented in 4.2.
If overall probability is high enough, the system recognizes
the activity even with the failure of the object layer.

Motion recognition failure: Section 4.1 presented how
the system calculates the candidate time intervals which
satisfy the language-like representation constructed for the
activity. In section 4.2, a mechanism to associate
probability with each time interval is shown. However, the
process presented in both sections relies on the fact that the
motion layer detects time intervals correctly, at least with
very low probability. That is, the system presented in 4.1
and 4.2 shows how to recognize a high-level activity even
with some of sub-events having a low probability, but it
does not show how to overcome the complete failure of the
motion layer. If the motion recognition fails completely, so
even a local maximum having very small probability does
not exist, then our time interval detection algorithm cannot
detect any time intervals for a high-level activity which has
that motion somewhere below the hierarchy tree.

We introduce the concept of ‘hallucination’ similar to [2]
to overcome the complete failure of the motion layer. The
hallucinations are time intervals of object motion that are

Figure 4: Example of the ‘hallucination’ for recognizing
human-object interaction ‘steal (p1, s1, p2)’. The sub-event
‘stay’ of the suitcase was not detected because of error. The
dotted arrow indicates the hallucination to help system recognize
person2 stealing person1’s suitcase.

j=Stay(s1)

i=Carry(p1, s1) k=Carry(p2, s1)

this=Steal(p1, s1, p2)

inserted by the system, even when no motion was detected
in the time intervals. The role of hallucinations is to
complement the failure of the motion layer, by making the
semantic layer think as if there exists a correctly detected
motion of an object. We normally insert hallucinations
between nearby sub-events. The probability associated
with hallucinations is set to a very low value. Figure 4
shows an example of the hallucination.

5. Experiments
We tested our framework to recognize meaningful

activities in an airport-like environment. Four categories of
objects participated in the activity: humans, suitcases,
boxes, and trash bins. Object motions are placed into five
classes: move left, move right, move upward, move
downward, and stay stationary. Based on these four
categories of objects and five classes of motions, high-level
human-object interactions are represented and recognized.
‘a person carrying a suitcase’, ‘a person leaving his/her
suitcase’, ‘a person stealing another's baggage’, ‘a person
carrying a box’, ‘a person leaving a box’, and ‘a person
placing a box into the trash bin’ are six high-level
human-object interactions that our system recognizes.

A Sony VX-2000 camcorder is used to record videos of
human-object interactions. The video was taken at 320*240
pixel resolution with 15 frames per second. The system is
implemented in C++ in the Windows platform. There were
45 sequences of images total (over 2000 frames), each
sequence containing more than one human-object
interaction. As a result, dataset contains total 80 high-level
interactions, and each human-object interaction was taken
at least 10 times. The object layer and the motion layer are
trained with 5 sequences randomly drawn from the total set.
In the semantic layer, the high-level representation of
human activities is constructed by human expert. The
parameters in the regression part are initialized with
domain knowledge, and updated with chosen 5 sequences.
The system was tested for entire dataset, recognizing
objects, motions, and activities.

Figures 5 and 6 presents the segmentation result, the
object recognition result, the motion recognition result, and
the final recognition result of human-object interactions ‘a
person placing a box into the trash bin’ and ‘a person
stealing another's baggage’. The segmentation between the
objects (humans, boxes, trash bins, and suitcases) was done
correctly. Objects were classified and their motions were
estimated accordingly. Time intervals associated with the
motion estimation results are also illustrated. Finally, the
figure presents time intervals associated with the
recognition results of high-level human-object interactions
‘a person placing a box into the trash bin’ and ‘a person
stealing another's baggage.

The recognition accuracy of six human-object
interactions is presented in Table 1. In order to illustrate the

power of our new probabilistic recognition algorithm, the
recognition result of the system with probabilistic
error-handling algorithm is compared to the system without
it. The number of atomic actions and spatial relationships
that compose the interactions is also listed to show the
complexity of the activity. The rate of ‘true positives’ are
shown in Table 1, while false positive rates were omitted
because they were almost 0. The result shows that our new
algorithm enables the system to recover the failures of the
object recognition or motion estimation, especially in case
of complicated activities. Particularly, the recognition rate
of the non-probabilistic algorithm for the activity ‘a person
placing a box into the trash bin’ was low because the

Figure 5: Example recognition results of the human-object
interaction ‘person placing a box into the trash bin’. The object
recognition, the motion recognition, and all intermediate
human-object interaction recognition results are presented.

Object recognition results:
(numbered from left to right)
 Object #1: Human 0.99 Trash bin 0.01
 Object #2: Box 0.98 Suitcase 0.02
 Object #3: Trash bin 0.93 Suitcase 0.07
Motion recognition results
 MoveLeft(o1) [4, 19], [23,40]
 Stay(o1) [1, 4], [19, 23], [40, 64]
 MoveLeft(o2) [10, 16], [21, 32], [37, 41]
 Stay(o2) [17, 21], [33, 37], [41, 47]
 MoveDown(o2) [47, 52]
 Stay(o3) [1, 64]
Final human-object recognition results
 Carry(o1, o2) [10, 16], [21, 32], [37, 40]
 Trash(o1, o2, o3) [37, 52]

Figure 6: Example recognition results of the human-object
interaction ‘a person stealing another's baggage’.

Object recognition results:
 Object #1: Human 0.99 Trash bin 0.01
 Object #2: Suitcase 0.83 Trash bin 0.17
 Object #3: Human 0.98 Trash bin 0.02
Final human-object recognition results
 Carry(o3, o2) [22, 25]
 Stay(o2) [26, 76], [82, 90], [96, 104]
 Carry(o1, o2) [107, 117]
 Steal(o3, o2, o1) [107, 117]

t=31 t=43 t=51t=21 t=64

t=52 t=64 t=85t=22 t=120

motion layer was not able to reliably estimate one of its
sub-events, ‘move down’ motion of a box (motion
estimation accuracy 0.6). Our probabilistic semantic layer
compensated for such failure with a hallucination generated
based on the other sub-events, acquiring significantly
higher recognition rate. As the number of sub-events
increases, the chance of compensating increases which
results the high-level activities to be recognized reliably.

In addition, we also conducted experiments to show that
the feedback from the accurate semantic layer improves the
performance of the object recognition and the motion
estimation. The experimental results justify our approach to
integrate the result of object recognition, the result of
motion recognition, and the feedback from the semantic
layer to help the object recognition and motion estimation.

Table 2 shows the performance of our object recognition.
Final recognition performance of the object layer is
compared with that of the primitive object module, which
recognizes objects solely based on the input features. We
were able to observe that our primitive module tends to
confuse suitcases and trash bins because of the similarity
between their shapes. The final classification decision
made by the object layer overcame this problem by taking
advantage of the recognition results of the other layers. The
table clearly illustrates that accuracy of the object layer
increases as a result of the compensation.

The recognition accuracy of objects’ motion is
illustrated in table 3. Because of the shadow changes, the
primitive motion module was weak on estimating ‘staying’
motion. Also, the primitive motion module sometimes fails
to estimate ‘move down’ motion of a box due to occlusions
between a human and the box. Table 3 shows that our
system was able to compensate those failures with the help
of the object layer and the semantic layer.

6. Conclusion
We presented a novel framework for the reliable

recognition of high-level human-object interactions. The
framework integrates the object recognition, the motion
estimation, and the semantic-level recognition of high-level
human-object interactions. Each layer probabilistically
compensates for the failure of the layer with the use of the
decisions made by the other layers. The experiments show
that our framework not only results in the reliable
recognition of high-level human-object interactions, but
also increases the accuracy of object recognition and
motion estimation.

The main technical contribution made in this paper is on
the probabilistic semantic layer to hierarchically recognize
high-level human-object interactions. An algorithm to
reliably recognize human activities represented in terms of
complicated temporal, spatial, and logical relationship has
not been developed before. Our algorithm probabilistically
recognizes complicated human-objects interactions even

when the object recognition or the motion estimation
component made failures. Error handling mechanisms for
failures of the other components were analyzed in detail.

Interaction # of
atomic
action

of
spatial
relation

Algo.
w/o
prob.

Algo.
with
prob.

Carry(p1,s1) 2 1 0.866 0.933
Leave(p1,s1) 3 1 0.8 0.9
Steal(p1,s1,p2) 5 2 0.7 0.9
Carry(p1,b1) 2 1 0.9 0.95
Leave(p1,b1) 3 1 0.7 0.8
Trash(p1,b1,t1) 3 3 0.4 0.9
total 0.778 0.911

Table 1: Overall recognition accuracy of the system
Object primitive final
Human 0.937 0.957
Suitcase 0.895 0.946
Box 0.952 0.971
Trash bin 0.883 0.982
total 0.918 0.957

Table 2: Object recognition accuracy
Motion primitive final
Move left (right) 0.957 0.985
Move down (up) 0.6 0.85
Stay 0.794 0.941
total 0.856 0.952

Table 3: Motion estimation accuracy

References
[1] J. F. Allen and G. Ferguson, Actions and Events in Interval

Temporal Logic, Journal of Logic and Computation,
4(5):531-579, 1994.

[2] D. Minnen, I. Essa, T. Starner, "Expectation Grammars:
Leveraging High-Level Expectations for Activity
Recognition," CVPR’03, p. 626, 2003.

[3] D. J. Moore, I. A. Essa, and M. H. Hayes III. Exploiting
human actions and object context for recognition tasks.
ICCV, volume 1, pages 80-86, Corfu, Greece, 1999

[4] I. Haritaoglu, D. Harwood, and L. S. David, 2000. W4:
Real-Time Surveillance of People and Their Activities. IEEE
Trans. on PAMI. 22, 8 (Aug. 2000), 809-830

[5] Y. A. Ivanov and A. F. Bobick, Recognition of Visual
Activities and Interactions by Stochastic Parsing, IEEE
Transactions on PAMI no. 8, pp. 852-872, August 2000.

[6] R. Nevatia, T. Zhao, and S. Hongeng, “Hierarchical
Language-based Representation of Events in Video Streams”,
Proceedings of the Workshop on Event Mining, 2003.

[7] S. Park and J. K. Aggarwal, “A Hierarchical Bayesian
Network for Event Recognition of Human Actions and
Interactions, ACM Journal of Multimedia Systems, special
issue on Video Surveillance,” 10(2), pp. 164-179, 2004

[8] M. S. Ryoo and J. K. Aggarwal, “Recognition of Composite
Human Activities through Context-Free Grammar Based
Representation,” CVPR’06, pp. 1709-1718, 2006.

[9] T. Starner, A. Pentland, "Real-time American Sign
Language recognition from video using hidden Markov
models," ISCV, p. 265, 1995.

