
ICPR
2006

18th International Conference on Pattern Recognition
Hong Kong, August 2006 (ICPR ’06)

ICPR
2006

Semantic Understanding of Continued and Recursive Human Activities

M. S. Ryoo and J. K. Aggarwal
Computer and Vision Research Center, Department of ECE

The University of Texas at Austin, Austin, TX 78712
{mryoo, aggarwaljk}@mail.utexas.edu

Abstract

This paper presents a methodology for semantic
understanding of complex and continued human
activities. A context-free grammar (CFG) based
representation scheme developed earlier is extended to
construct a description for continued and recursive
human activities. New system recognizes recursively
described high-level interaction, fighting and greeting.
The system understands activities by detecting the time
intervals that satisfy their semantic descriptions.

1. Introduction

Semantic understanding of human activity is an
important component in several computer vision
applications. Particularly, for surveillance systems,
understanding what activity people are performing is
needed to detect abnormal activities as opposed to the
normal activity of people using public places like
airports and subway stations. Semantic understanding
of activities is also essential for real-time automatic
monitoring of elderly people, patients, or babies.
Several researchers have achieved semantic
understanding of human activities. However, most of
those works focus mainly on the understanding of
single (i.e. atomic) actions of humans, not on the
understanding of the complex composition of multiple
movements or actions [1].

Our system understands recursive human activities
semantically through the use of a context-free grammar
(CFG) based representation scheme. Our work is an
extension of the previous work done by Ryoo and
Aggarwal [6]. Their representation scheme enables a
user to describe composite human activities based on
smaller sub-activities. The significant extension made
in this paper is that our system allows recursive
descriptions of composite activities, which is the key
for understanding high-level human activities such as
fighting and greeting. Recursive description means that

the user is able to describe high-level activities as a
composition of other smaller activities and the defining
activity itself.

The focus of this paper is on the semantic layer, the
highest level, of the recognition system. In the
semantic layer, recursive descriptions of human
activities are constructed in terms of sub-events’ time
intervals and the relationships among them. The
system then understands human activities by finding a
time interval that satisfies all conditions specified in
the description. Human activities are classified into
three categories: atomic actions, composite actions,
and interactions. A hierarchical framework developed
by Park and Aggarwal [4,5] was adopted to detect
atomic actions from the sequence of input frames.

2. Previous systems

Researchers in traditional AI fields have focused on
definitions and inferences of events. Allen and
Ferguson [2] presented a definition of temporal
intervals, and defined events using interval temporal
logic. Descriptions for events were constructed in the
form of the first-order logic, specifying necessary
relationships for the events.

Several researchers in computer vision conducted
research on formal description of human activities,
motivated by the Allen’s interval temporal logic. The
representation language for composite events
presented by Nevatia et al. [3] yielded successful
results. They not only constructed the formal
description, but also illustrated algorithm to detect
occurring human activities from input images. The
limitations of their work were describing the complex
composition of activities which are composite
activities themselves, since the structure of the
descriptions were strictly fixed to three layers.

Ryoo and Aggarwal [6] also adopted the concept of
time interval representation presented by Allen and
Ferguson to describe hierarchical events. They used

the context-free grammar as a format of the
representation scheme. Their scheme enabled the user
to describe higher-level activities based on already
described smaller sub-events, making the system to
handle infinite layers of hierarchies. The detection of
described activities is essentially the traditional
constraint satisfaction problem.

3. Recursive activities

Previous researchers described human activities in
terms of a strictly fixed number of sub-events.
However, for abstract high-level human activities such
as ‘fighting’ or ‘greeting’, the number of sub-events is
not clear. We cannot say that the person punching the
other three times is a fighting activity while the person
punching four times is not. Rather, those high-level
human activities tend to have recursive characteristics.
Assume that the system detected fighting interaction in
some time interval. If another punching interaction is
directly followed by a detected fighting interaction, the
system must detect a longer fighting interaction
covering the latest punching, based on the detection of
the smaller fighting interaction.

3.1 Recursive activity description

We here provide a concept of recursive description
for human activities. In the case of recursive actions
and interactions, a defining human activity can become
sub-events of itself. We do not describe the actual
overall size of the defining human activity, but instead
use smaller identical activity as a sub-event. This
recursive description is able to catch infinite size of the
defining activity, since the level of hierarchy can grow
infinitely.

Essentially, the syntax provided in the previous
CFG-based representation scheme is able to describe
recursive activities without any modification.
Modification is not needed for the syntax, but for the
interpretation in the representation scheme. Previously,

the InteractionName(i, j) in the CFG syntax can only
denote activity names (strings of characters) that had
been defined already. If we modify the interpretation
of InteractionName(i, j) little bit, enabling the user to
use name of defining activity also, the recursive
activities can be described easily. The formal
production rules of the CFG representation scheme are
outlined below.

InteractionDefine(i, j)
-> InteractionName(i, j) = InteractionExp(i, j);

Interaction(i, j)
-> InteractionExp(i, j) | InteractionName(i, j)

InteractionsExp(i, j)
-> (InteractionDefs(i, j, var),

InteractionRelationship(i, j, var))
InteractionDefs(i, j, var)
-> list(def(c, Interaction(i, j)),

InteractionDefs(i, j, var-c))
| list(def(c,Action(i or j)), InteractionDefs(i,j,var-c))
| def(c, Action(i or j)) | null

InteractionRelationship(i, j, var)
-> Logical-Predicate(InteractionRelationship(i,j, var),

 InteractionRelationship(i, j, var))
| Temporal-Predicate(‘this’, var(a))
| Temporal-Predicate(var(a), var(b))
| Spatial-Predicate(person i, person j, threshold)

Another important structure of the recursive

activities is the existence of the base case. The
recursive activities are detected by detecting the
smaller identical activity. Therefore, at some point, the
system needs the seed (or core) activity of the
detection, which does not rely on the detection of
smaller identical activity. This is called base case of
the recursive activity. When describing the recursive
activity, the user must always construct the base case
of the activity. Otherwise the system will fail to
understand the activity.

Let’s look at the actual ‘Fighting’ interaction for
example. In principle, the interaction ‘Fighting’ is
defined as a concatenation of another smaller
‘Fighting’ and one ‘NegativeInteraction’ as illustrated
in the Figure 1. The ‘NegativeInteraction’ is or
concatenation of ‘punching’, ‘kicking’, and ‘pushing’,
which are composing activities of the fighting. The
base case of the ‘Fighting’ is one ‘NegativeInteraction’.
The ‘Greeting’ interaction can be described in a similar
manner. In case of ‘Greeting’ interaction, the
interaction must contain at least one ‘HandShake’
interaction which is a core of ‘Greeting’. Thus, the
base case of the greeting is the single hand shaking
interaction. Following shows the formal description for
‘NegativeInteraction’, ‘Fighting’, and ‘Greeting’.

this=Fighting_interactions(person1,person2)

x=Fighting(p1,p2) y=NegativeInteraction(p1,p2)

Figure 1: The necessary temporal relationship
among time intervals for recursive interaction
‘fighting’. The base case is shown in bottom.

or

y=NegativeInteraction(p1,p2)

this=Fighting_interactions(person1,person2)

NegativeInteraction(i, j) = (
list(def(‘x’, PunchingInteraction(i, j)),

list(def(‘y’, KickingInteraction(i, j),
 def(‘z’, PushingInteraction(i, j)))),

or(equals(‘this’, ‘x’),
 or(equals(‘this’, ‘y’), equals(‘this’, ‘x’)))

);
FightingInteraction(i, j) = (

list(def(‘x’, FightingInteraction(i, j)),
 def(‘y’, NegativeInteraction(i, j))),
or(equals(‘y’, ‘this’),

and(meets(‘x’, ‘y’),
 and(starts(‘x’, ‘this’), finishes(‘y’, ‘this’))))

);
GreetingInteraction(i, j) = (

list(def(‘x’, HansShakeInteraction(i, j)),
 list(def(‘y’, PositiveInteraction(i, j))

def(‘z’, GreetingInteraction(i, j)))
),
or(equals(‘x’, ‘this’),
 or(and(meets(‘y’, ‘z’),
 and(starts(‘y’, ‘this’),

finishes(‘z’, ‘this’))),
 and(meets(‘z’, ‘y’),
 and(starts(‘z’, ‘this’),

finishes(‘y’, ‘this’)))))
);

3.2 Recursive activity understanding

For the understanding of recursively described

actions and interactions, an iterative approach is used.
We explain this iterative algorithm with the example,
the ‘Fighting’ interaction. The system starts with
setting time interval ‘x’, corresponding to sub-event
‘Fighting’, to null. Then, the system is only able to
find base cases. In the case of ‘fighting’, single
‘NegativeInteraction’ corresponds to a base case. Once
we found some initial ‘fighting’ interactions, we now
treat those detected ‘fighting’ as sub-events of the 2nd
iteration. The ‘fighting’ interactions found through the
2nd iteration serve as a sub-event of the 3rd iteration.
Iteration continues until no larger ‘fighting’ is detected.
The detection result of nth iteration is served as a sub-
event of (n+1)th iteration. With this iterative algorithm,
given the detection result of 1st iteration, i.e. based case
detection, we are able to detect recursive activities.
The pseudo-code of the complete algorithm is
provided in the Figure 2. The function CSP implies
that we are solving constraint satisfaction problem
mentioned in our previous work [6]. The system finds
occurring activity by checking all possible
combinations of (variable, time interval) pairs, whether
they satisfy the activity’s description or not.

4. Experiments

The goal of our system is to understand the
recursive interactions, fighting and greeting. Also, the
following eight simple interactions are described and
detected, since they serve as sub-events of fighting and
greeting: approach, depart, point, shake-hands, hug,
punch, kick, and push [6]. The descriptions for eight
simple interactions and two recursive interactions were
constructed manually following the CFG
representation scheme. Usually, composite actions are
first defined in order to describe meaningful one-
person movement, based on several atomic actions.
Eight simple interactions are then constructed, having
composite actions as their sub-events. Those
interactions serve as sub-events for higher-level
recursive interactions.

Interaction videos produced using a Sony VX-2000
are converted into sequences of image frames with
320*240 pixel resolution, obtained at a rate of 15
frames per sec. Six pairs of persons participated in the
experiment and 24 sequences were obtained. In each
sequence, participants were asked to perform a number
of the above interactions consecutively and
continuously. Overall, each simple interaction was
performed 12 times, and ‘fighting’ and ‘greeting’ were
performed 6 times throughout all sequences.

Figure 3 presents an understanding on the process
of the complex interaction ‘fighting’. Person2
‘punching’, person1 ‘punching’, and person2
‘pushing’ occurred sequentially. Poses for the body
part ‘arm’ are illustrated along the time line. In our

Figure 2: The algorithm for understanding of
recursive activities.

Detect(interaction i) {
if (i is non-recursive) {

for i’s (v=variable, j=sub-event){
 add (v, Detect(j)) to the list;
 result = CSP(list, i);

}
}
else result = RecursiveDetect(i);
return result;

}

RecursiveDetect(interaction i) {
let x denote the recursive sub-event;
for i’s (v=variable-x, j=sub-event){

add (v, Detect(j)) to the list;
result = CSP(list, i);

}
list.x = null;
do {

result = CSP(list, i);
list.x = current ∪ result;

} while (result!=current)
}

system, smaller ArmV pose value implies a higher arm,
and smaller ArmH implies a more withdrawn arm. The
atomic action detection results are illustrated as time
intervals. The system detects simple interactions based
on detected atomic actions. Then, the system detects
‘fighting’ interaction with the recursive understanding
algorithm we discussed. Figure 4 presents a recursive
interaction ‘Greeting’.

Tables 1 and 2 show the performance of our system.
Because of the accurate description on recursive
activities, the system was able to detect activities with
different length. Moreover, results are obtained from
sequences of consecutive interactions, not segmented
manually. The system automatically understands what
activity occurred where, without manual segmentations.

5. Conclusions

We have presented a semantic description scheme

and understanding algorithm for continued and
recursive human activities. The fundamental idea is to
extend the previously developed CFG representation
scheme to allow the recursive description of human
activities. Methodology for the semantic description
and understanding of recursive human activities was
provided clearly. The experiments show that the
system understands continued and recursive human
activities with a high recognition rate.

Table 1: Detection of recursive interactions
interaction total correct accuracy
fighting 6 4 0.667
greeting 6 4 0.667
total 12 8 0.667
Table 2: Detection of simple interactions
interaction total correct accuracy
approach 12 12 1.000
depart 12 12 1.000
point 12 11 0.917
shake hands 12 11 0.917
hug 12 10 0.833
punch 12 11 0.917
kick 12 10 0.833
push 12 11 0.917
total 96 88 0.917

References

[1] J.K. Aggarwal and Q. Cai, “Human Motion Analysis: A
Review”, CVIU 73(3), 1999, pp. 295-304.
[2] J.F. Allen and G. Ferguson, “Actions and Events in
Interval Temporal Logic”, Journal of Logic and
Computation 4(5), 1994, pp. 531-579.
[3] R. Nevatia, T. Zhao, and S. Hongeng, “Hierarchical
Language-based Representation of Events in Video Streams”,
Proceedings of the Workshop on Event Mining, 2003.
[4] S. Park and J. K. Aggarwal, “A Hierarchical Bayesian
Network for Event Recognition of Human Actions and
Interactions”, ACM Journal of Multimedia Systems, special
issue on Video Surveillance 10(2), 2004, pp. 164-179.
[5] S. Park and J. K. Aggarwal, “Simultaneous tracking of
multiple body parts of interacting persons”, CVIU 102(1),
April 2006, pp. 1-21.
[6] M.S. Ryoo and J.K. Aggarwal, “Recognition of
Composite Human Activities through Context-Free Grammar
based Representation”, CVPR’06, New York, NY, 2006
[7] J.M. Siskind, “Grounding the Lexical Semantics of Verbs
in Visual Perception using Force Dynamics and Event
Logic”, Journal of Artificial Intelligence Research 15, 2001,
pp. 31-90.

Figure 4: Recursive interaction ‘Greeting’.

Figure 3: Time intervals of atomic actions,
simple interactions, and recursive interaction
‘fighting’ are detected.

