
Abstract 
We introduce a human-computer interaction system 
which collaborates with a user by providing feed-
back during user activities. The goal of the system is 
to help a user complete a high-level activity that has 
been represented hierarchically. While a user is 
performing the high-level activity, our system ana-
lyzes what sub-events a user has already completed 
and what sub-events are needed next in order for the 
user to finish the activity. The representations of 
human activities are constructed using a previously 
developed context-free grammar based representa-
tion scheme. We focus on a game named ‘penta-
gram game’ to illustrate our system. In the experi-
ments, our system shows the ability to guide the 
user to complete the ‘pentagram game’ by providing 
explicit feedback. The feedback not only contains 
atomic level instructions but also describes 
higher-level long-term goals of the composite ac-
tivities. 

1 Introduction 
Humans understand the structure of activities, and they take 
advantage of this knowledge of structure when performing 
high-level activities. In the middle of performing a complex 
activity, humans know exactly what sub-events have already 
occurred and what sub-events need to be performed next. 
They explicitly or implicitly know what to do next, consid-
ering what they have done in order to achieve the goal in the 
past. For example, during a dance of an expert dancer, the 
dancer explicitly or implicitly knows what his/her next move 
should be. The dancer knows all his/her moves and their 
order in the dancing activity, and uses this knowledge during 
the dancing activity to decide various moves. 

Motivated by the ability of human experts, we design a 
human-computer interaction (HCI) system which collabo-
rates with a user to help the user complete high-level human 
activities. Similar to human experts, the system has knowl-
edge on the structure of the activity that the user wants to 
perform. Our system has a representation of an activity which 
describes how the correct activity should look like tempo-
rally, spatially, and logically, and uses it to automatically 

guide the user to perform the represented activity. While the 
user is trying to perform the activity he/she wants to do, our 
HCI system makes its own analysis on the current status of 
the activity being performed, and produce feedback. If the 
user does not perform the correct sub-event, the computer 
interface alerts the user to the mistake.  The goal is to enable 
the system to provide feedback (or advice) to the user based 
on its action representation and visual observations. 

A HCI system helping a novice in the task of tightening 
nuts while installing a car tire is a typical example that mo-
tivated the construction of our algorithm. The task is com-
posed of multiple sub-events (tightening a single nut) which 
must follow a particular order: nuts must be tightened in the 
order that is similar to drawing a star. Also, in this type of 
tasks, a user can undo sub-events (un-tightening a nut) to 
recover from his/her mistake. The detailed structure and 
characteristic of this activity is discussed in the section 4. Our 
system has the ability to guide a user not only to perform 
sub-events in a correct order but also to undo sub-events 
when he/she made a mistake. Our algorithm is designed to 
provide feedback to accomplish those activities as well as 
other general activities. 

Previous HCI systems had mainly action-reaction based 
models. Those systems recognize human actions and perform 
particular reactions already encoded in the system. Research 
on intelligent environments is a typical example of these 
reactive systems. The goal of our system is a little different. 
The goal of previous reaction based HCI systems is to pro-
vide correct reactions for corresponding actions, while that of 
our system is to guide and instruct how to make a whole 
high-level activity successful by providing feedback. Reac-
tion based HCI systems are not suitable in our case. In order 
for reaction based HCI systems to guide a user to perform 
represented activities containing concurrent as well as se-
quential sub-events, the system must specify all possible 
steps and branches of the order of sub-events; the number of 
cases becomes very large. In addition, the feedback provided 
by our system is hierarchical, which is difficult for reaction 
based systems to deal. 

The main technical contribution made in this paper is on 
the algorithm to provide feedback, which estimates the in-
ternal states of the incomplete composite activity and pre-
dicts what sub-event is needed in order to complete the action. 
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In the case of simple sequential models, such as finite state 
machines or hidden Markov models, estimating which state 
and what to do is a simple task since they inherently contain 
the information on the next occurring sub-event. However, in 
the case of activities that can only be represented by highly 
complex models, such as full first-order logic, this is no 
longer a simple task. We use the human activity representa-
tion framework developed by Ryoo and Aggarwal [2006]. In 
activities consisting of concurrent sub-events, it is not easy to 
determine which point the system has reached, and what 
sub-event is urgently needed in concurrent activities. In ad-
dition, in highly complex activities, some sub-events might 
have an identical sequence in the beginning, confusing the 
system in its decision as to the status of the activity.  

2 Related Works 
The reactive systems mentioned in the introduction have 
similar aspects as our system. Since Coen [1998] presented 
design principles of intelligent environments, several re-
search projects constructed HCI systems for intelligent en-
vironments, rooms, and workspaces [Hassens et al., 2002; 
Kulkarni, 2002]. They introduced the concept of reactive 
behavioral systems, extending previous rule-based reactive 
systems. Their main goal is to make the HCI correctly re-
spond to relatively simple user behaviors or actions within 
the activity context. 

On the other hand, several works on surveillance and 
children monitoring systems attempted to recognize hierar-
chical human activities [Minnen et al., 2003; Park and Ag-
garwal, 2006; Siskind, 2001]. Most of those works only 
focused on after-the-fact detection of activities, and did not 
attempt to provide feedback to the user who is performing the 
activities. In the work done by Ryoo and Aggarwal [2006], 
high-level human activities were represented hierarchically 
using context-free grammar (CFG) syntax, specifying tem-
poral, spatial, and logical relationships among sub-events. 
Their representation was similar to the first-order logic using 
Allen’s temporal predicates [Allen, 1994], and recognition 
was done hierarchically. 

3 Feedback 
The objective of our algorithm to provide feedback is as 
follows: Given a situation where the user is in the middle of 
performing an action, the system must analyze which 
sub-events are already done and which sub-events need to be 
done. The explicit feedback must be provided finally, stating 
which sub-events are immediately needed and what is their 
appropriate starting time and ending time. 

We assume that the system initially has the language-like 
representation of activities. We start with converting the 
representation of activities into a directed graph representa-
tion, which makes the system able to apply our algorithm. 
We then discuss principle theorems justifying our approach. 
Finally, we present a general algorithm for providing feed-
back to hierarchical activities. The system must convey hi-
erarchical structure of activities and generate hierarchical 
feedback. 

3.1 Language-like Representations 
In order for our HCI system to provide feedback, the system 
must have a formal and complete representation of the ac-
tivity that a user is trying to accomplish. We use Ryoo and 
Aggarwal’s CFG-based representation syntax to construct a 
formal representation of activity by listing necessary tem-
poral and spatial conditions. It is always assumed that the 
system has a programming language-like representation of 
the activity it wishes to recognize. 

Example 1 Let’s look into a spinning move in figure skating 
as an example. Spinning moves that figure skaters do are 
complex human activities, which involve both arm and leg 
movements. Assume that our system wants to provide feed-
back (advice) to a skater to perform a common combination 
spin, a camel-sit spin. In a camel spin, a skater must spin with 
his/her leg and arm fully outstretched horizontally, into the 
general shape of a ‘T’. In a sit spin, the skater must sit while 
spinning. The camel-sit spin is a sequence of two spins: the 
skater must initially spin with a ‘T’ shape, and then sit while 
spinning. Our system must have the following CFG-based 
representation before applying our feedback providing algo-
rithm: 

Camel-Sit_Spin(person1) = ( 
 list( def(‘a’, Spin(person1)), 
   list( def(‘b’, Sit(person1)), 
     list( def(‘c’, Stretch_Arm(person1)), 
       def(‘d’, Stretch_Leg(person1))) )), 
 and( equals(a, this), 

and( and( during(c, a), during(d, a) ), 
     and( during(b, a), 

and( meets(c, b), meets(d, b) ) ) )) ); 

3.2 Directed Graph Representations 
The language-like representation of activities is hu-
man-oriented. In order to estimate ongoing status of the ac-
tivity and to generate proper feedback, our system converts a 
programming language-like activity representation into an 
internal directed graph representation automatically using the 
following algorithm. 

In our directed graph representation, a vertex is a time 
point (either starting time or ending time of a sub-event), and 
an edge from vertex t1 to vertex t2 implies t1 < t2. The 
purpose of this conversion is to calculate the necessary tem-
poral ordering between times associated with an activity’s 
sub-events. Our feedback providing algorithm uses this di-
rected graph representation of human activities, since the 
directed graph representation enables us to calculate the 
order of two time points easily. 

The procedure to convert our CFG-based representation 
into a directed graph representation is presented below. 

First, the system must convert Allen’s temporal predicates 
for time intervals into equalities and inequalities among time 
points. In our CFG-based representation, temporal relation-
ships are specified as a logical formula of Allen’s temporal 
predicates. Following the definition of temporal predicates, 
the representation can be converted into equalities and ine-
qualities among time points as follows: 



Let a and b be the time intervals, (astart,aend) and (bstart,bend). 
equals(a, b)  => astart = bstart and aend = bend 
before(a, b)   => aend < bstart 
meets(a, b)  => aend = bstart 
overlaps(a, b)  => astart < bstart and bstart < aend 
starts(a, b)   => astart = bstart and aend < bend 
during(a, b)  => bstart < astart and aend < bend 
finishes(a, b)  => aend = bend and astart > bstart 
Also, we add one trivial inequality astart<aend for all time 

intervals a. As a result, logical concatenations of Allen’s 
temporal predicates are converted into logical concatenations 
of equalities and inequalities among time points. 

Next, the system removes the predicate not, as follows. 
not(t1<t2)  => t2 < t1 or t1 = t2 
not(t1=t2)  => t1 < t2 or t2 < t1 
The system then converts a logical formula into a dis-

junctive normal form (DNF). The end product is the dis-
junction of conjunctive clauses of pure equalities and ine-
qualities. This suggests that the activity representation can be 
divided into several conjunctive clauses, where each clause 
presents necessary temporal conditions for the activity. There 
is no semantic difference between the DNF representation 
and the directed graph representation we plan to construct. 
For each clause, we formulate one directed graph to help the 
user visualize the representation. The system first calculates 
time points that are equal, checking the equalities in a clause. 
The system assigns one vertex for a set of time points which 
are equal. For example, if t1=t2 and t2=t3, only one vertex is 
assigned for a set {t1, t2, t3}. Then, an edge is constructed 
from a vertex v1 to a vertex v2, if ∃t1, t2 such that ( t1∈v1 
and t2∈v2). What this directed graph representation sug-
gests is that the activity can be completed if and only if an 
integer value is correctly assigned for each vertex while 
satisfying the temporal order of the graph. 

Example 2 The language-like representation of the camel-sit 
spin, which we discussed in example 1, may be converted 
into a directed graph. First, the temporal predicates are con-
verted into equalities and inequalities. 

(astart<aend  and bstart<bend and cstart<cend and dstart<dend  and 
astart=thisstart and aend=thisend and astart<cstart and cend<aend  
and astart<dstart and dend<aend and astart<bstart and bend < aend  
and cend = bstart and dend = bstart) 
This already is a DNF composed of only one conjunctive 

clause. Figure 1 shows a final directed graph representation 
of the example. 

 

3.3 Consistent State and Feedback 
This subsection describes principle definitions and theorems 
which justifies for our algorithm theoretically. 

In our directed graph representation, analyzing the status 
of ongoing activity is identical to finding up to which vertices 
the user has assigned a correct value. Since vertices corre-
spond to the starting or ending times of sub-events, assigning 
values for vertices means that a user started and ended 
sub-events in those time points. We denote a set of assigned 
vertices as a state of the graph. 

The system can calculate more than one possible assign-
ment, i.e. state, in one situation. There might be multiple 
candidate assignments for each vertex, since sub-events can 
occur multiple times. In addition, the system might leave 
some vertices unassigned, leaving them to be assigned in the 
future. Among many possible states, few of them satisfy the 
temporal order specified in the graph. We call those states 
consistent states. 
Definition 1 (Assigned Vertex) We define a vertex assigned 
vertex, if the system has assigned an identical value to all 
time points associated with the vertex. We define a vertex 
unassigned vertex, if the system did not assign any value to 
the time points associated with the vertex. We define a vertex 
half-assigned vertex, if the sub-set of time points in the vertex 
are assigned while the others are unassigned. 
Definition 2 (Consistent State) Let S be a set of assigned 
vertices in a graph G. Let H be a set of half-assigned vertices 
in G. We say the graph G is in the consistent state with the 
assignment S and H if and only if 

1. ∀ v, w:  v, w ∈ S∪H, v<w if there exist a path from 
v to w, and 

2. ∀v:  v ∈ S,  (parents of v)⊂ S, and 
3. ∀v:  v ∈ H,  (parents of v)⊂ S, and 

The consistent state implies that there is no contradiction 
among assigned values of the graph. The consistent state 
clearly shows up to which point the activity has been proc-
essed. From Definition 2, we know that a graph without any 
assignment is also in a consistent state. Among consistent 
states, the states which we are particularly interested in are 
maximum consistent states. If additional assignments based 
on currently provided time intervals are not possible for a 
consistent state, it is a maximum consistent state. 

Calculating the maximum consistent states of an ongoing 
activity is the key component not only for analyzing the 
status of ongoing activity, but also for providing feedback. 
We introduce two theorems which will lead us to use an 
iterative approach to find maximum consistent states. 
Theorem 1 Let U be a set of all vertices in a graph G in a 
consistent state. Let v be a vertex, where v∈U-H-S and ∀
(parents of v) ∈ S. If we assign a value larger than (max of 
parents of v) to the entire time points in v, then G is still in the 
consistent state. If we assign the same value only to the 
sub-set of time points in v, making the v half-assigned, then G 
is still in the consistent state. 
Theorem 2 Let v be a vertex, where v∈H. If we make vertex 
v an assigned vertex by assigning identical values for all time 
points in v, then G is still in the consistent state. 

Figure 1: The directed graph representation for ‘Camel-Sit_Spin’. 
Edges (as, ae), (as, bs), (ce, ae), and (de, ae) are omitted in the graph.
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Iteratively updating consistent states using Theorem 1 and 
2 will lead us to the maximum consistent states. Assuming 
that the system knows all starting times and ending times of 
sub-events, the system can check whether further update is 
possible or not. If possible, the system can assign the value of 
detected sub-events for corresponding vertex. The only con-
straint is that the starting time and the ending time of the 
same sub-event must match. For example, if there are two 
time intervals (1, 5) and (3, 8) for the sub-event A, the system 
cannot assign 1 for As and 8 for Ae. This can be checked by 
applying either a dynamic programming algorithm or an 
algorithm which traverses back when adding the ending time 
of a sub-event. The resulting time complexity is either linear 
time or quadratic time in each case. 

Algorithm to calculate maximum consistent states 
1 Initialize all vertices in the graph as unassigned vertices 
2 do 
3 Apply Theorem 1 and 2 to find a vertex v 
4 Make v an assigned vertex or a half assigned vertex 

accordingly 
5 Update v.value as a list of possible assignments 
6 for all i, 
7 Update v.value[i].p as a list of assignments of 

parent vertex which is less than v.value[i]. 
8 if v.value[i] is an ending time of a sub-event, 
9 Traverse back the graph using value and 

value[i].p of ancestors of v to check the 
starting of the sub-event was assigned 

10 if not, remove v.value[i] from v.value 
11 while v ≠  NIL 
12 return assignments of the graph 

Even though maximum consistent states do not have any 
contradiction among their assignments on vertices, it does 
not imply that the future assignments without any contraction 
are possible. Therefore, we must calculate maximum valid 
consistent states based on the maximum consistent states. 

Definition 3 (Valid Consistent State) We call a consistent 
state as a valid consistent state, if it has at least one possible 
combination of future assignments that satisfies temporal 
relationships among vertices. The maximum valid consistent 
states are the valid consistent states which do not have other 
valid consistent states containing them. 

Algorithm to calculate maximum valid consistent states 
1 for each maximum consistent state with the assignment 

S and H, 
2 S’ = S ; H’ = H 
3 do  
4 Find as∈v such that 

{v∈S’∧ ((ae is not assigned ∧ ae<= current 
time point) ∨ (ae is assigned for v’∈H’ ∧ 
ae<current time point))}∨ 
{v∈H’∧ as<current time point} 

5 S’ = S’ - (as ∪ descendent of v) 
6 H’ = H’ - (as ∪ descendent of v) 
7 while as ≠  NIL 
8 return set of all S’ and H’ 

After calculating maximum valid consistent states, the 
system can provide feedback to the user. The feedback is 
one-step look-ahead information of the activity. By applying 
Theorem 1 and 2 once more to calculated maximum consis-
tent states, the system is able to see what sub-events are 
needed next in what time interval. 

3.4 Hierarchical Feedback Algorithm 
The actual algorithm for feedback providing is described in 
this subsection, especially focusing on the hierarchical aspect 
of our feedback. 

Most high-level human activities have hierarchical struc-
tures; sub-events also have their own sub-events. This im-
plies the system needs a hierarchical algorithm to recognize 
time intervals of sub-events, and suggests that hierarchical 
feedback is needed. 

Therefore, a recursive algorithm is designed, where the 
base case is the feedback providing for atomic actions (di-
rectly telling the user to do the atomic action). For composite 
activities, the system analyzes sub-events’ temporal struc-
tures using our directed graph representation of the activity, 
and tells the user to start or end a particular sub-event, by 
applying the algorithm presented in subsection 3.3. If that 
sub-event is an atomic action, then the system can simply tell 
the user to do the action. If that sub-event itself is a composite 
activity, the system must tell the user how to complete that 
sub-event also. That is, the system must examine sub-events 
of the sub-event to provide hierarchical feedback. This 
process continues until the atomicity is gained. 

Example 3 Let’s look into the spinning moves in figure 
skating once more. Assume that a user wants to perform the 
camel-sit/sit spin. We already defined what the camel-sit spin 
is and what the sit spin is. The camel-sit/sit spin is a combi-
nation of the camel-sit spin and the sit spin, where the skater 
changes his/her axis feet between two spins. We can set the 
sub-events of the camel-sit/sit spin to be the camel-sit spin 
and the sit spin. Assume that the system wants to provide 
feedback when the user just started to spin at time 1. Ap-
plying the approach presented in subsection 3.3 will result 
with the system telling the user to ‘start the camel-sit spin, 
after 1+’. However, that information is not sufficient. The 
system must explicitly specify how to start the sub-event also, 
as follows: 

1. In order to do a camel-sit/sit spin at (1, 1+), do the 
camel-sit spin at (1, 1+) 

2. In order to do a camel-sit spin (1, 1+), do a stretch 
_arm at (1+, 1+) and do a stretch_leg at (1+, 1+). 

3. Stretch_arm and stretch_leg are atomic actions, so do 
them now. 

We always assume that the system knows time intervals of 
sub-events already occurred by using the recognition algo-
rithm for the CFG-based representations. Further, we also 
assume that the system knows the starting time of a sub-event 
as soon as the sub-event started. That is, for each sub-event, 
the system has a list of time intervals which specifies pre-
vious occurrences of the sub-event, and has candidate start-
ing times of the sub-event that are not completed. 



Algorithm to provide hierarchical feedback: 
1 Using previous recognition algorithms for the 

CFG-based representation, find all possible starting 
times and ending times of sub-events 

2 Convert the CFG-based representation into directed 
graph representations 

3 Find the maximum valid consistent state closest to goal 
4 Apply Theorem 1 and 2 once more to construct feedback. 

When to start or end the corresponding sub-event is 
specified 

5 If the sub-event from step 4 is a composite itself, apply 
the same procedure from step 1 to the sub-event 

6 return the concatenated feedback 

4 Experiments 
We focus on the activity named ‘pentagram game’ for the 
experiments. The ‘pentagram game’ is a composite action, a 
sequence of moving or removing stones in a particular place, 
similar to the activity of tightening the tire of a car. For our 
experiments, we define three types of atomic actions that take 
two parameters: move_stone(person1,place1), remove_stone 
(person1, place1), and basic_safe(person1, place1). The first 
atomic action describes a person1 moving a stone to place1. 
The seconding atomic action describes a person1 removing a 
stone from place1 and placing it to somewhere else. The last 
atomic action describes that a person1 did not perform any 
action related to place1. For the notational convenience, we 
will simply write move_stone(person1, place#) as ‘move#’, 
since only one user is moving the stones. Our system detects 
the starting time and ending time of the atomic actions using 
the computer vision techniques. 

In order to make the high-level activity ‘pentagram game’ 
successful, the user must place all stones in the locations 
following a particular order. Figure 2 describes the order of 
the activity ‘pentagram game’. One important characteristic 
of the ‘pentagram’ is that the user can always remove stones 
to go back to previous the state, which makes the activity 
more complex than it seems to be. For example, following 
the sequence of atomic actions satisfies the ‘pentagram 
game’ activity: move1-move3-remove3-move2-move3-move 
4-move5. Even though move3-remove3 was interrupted in the 
original sequence m1-m2-m3-m4-m5, this also is a ‘penta-
gram game’ activity since the person removed the stone from 
place3 before other moves. Before defining the composite 
activity ‘pentagram game’, we need to define move followed 
by remove, such as m4-m5-rm4-rm5. We name this activity 
as a composite activity Safe(person1, stone1, place1, place2, 
place3, place4, place5). When playing ‘pentagram game’, 
‘safe’ activity can be inserted between correct moves. 

Therefore, the ‘pentagram game’ will be composed of five 
‘move_stone’ atomic actions, and five ‘safe’ composite ac-
tivities: Safe-m1-Safe-m2-Safe-m3-Safe-m4-Safe-m5. Our 
language-like representation for the activity ‘Penta-
gramGame’ is as follows. The actual representation of the 
‘Safe’ is omitted due to the limitation of space. 

PentagramGame(person1, place1, …, place5) = ( 
  list(  def(‘x1’, move_stone(person1, place1)), 

   def(‘x2’, move_stone(person1, place2)), 
   def(‘x3’, move_stone(person1, place3)), 
   def(‘x4’, move_stone(person1, place4)), 
   def(‘x5’, move_stone(person1, place5)), 
   def(‘s1’, Safe(person1, place1, …, place5)), 
   def(‘s2’, Safe(person1, place1, …, place5)), 
   def(‘s3’, Safe(person1, place1, …, place5)), 
   def(‘s4’, Safe(person1, place1, …, place5)), 
   def(‘s5’, Safe(person1, place1, …, place5))  ), 

and(   
starts(‘this’, ‘x1’), finishes(‘this’, ‘x5’), 
meets(‘s1’, ‘x1’), meets(‘x1’, ‘s2’), meets(‘s2’, ‘x2’), 
meets(‘x2’, ‘s3’), meets(‘s3’, ‘x3’),meets(‘x3’, ‘s4’), 
meets(‘s4’,‘x4’), meets(‘x4’, ‘s5’), meets(‘s5’, ‘x5’) ) 

); 
We shot a video of users doing the ‘pentagram game’. 

Some of them performed a complete sequence of successful 
activities, while others were stopped in the middle of an 
activity. For some sequences, mistakes were intentionally 
made, such as inserting move4-move3 after initial move1. 
The purpose of these erroneous insertions was to test whether 
our feedback providing algorithm can correctly guide the 
user to complete the overall activity. For example, if we fed 
the input sequences of move1-move4-move3, the system must 
guide user to start remove3 and start remove4. 

Videos taken by the Sony VX-2000 were converted to a 
sequence of frames with a frame rate of 10 per second. Each 

Figure 3: The directed graph representation for ‘PentagramGame’. 
The dotted vertices are unassigned vertices or half-assigned vertices.
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Figure 2: The illustration of the setup for ‘pentagram game’. There 
are five locations: place1, place2, …, and place5. Black stones are to 
be placed on each location. If the placement is done in correct order 
from 1 to 5, then the activity ‘pentagram game’ is complete. Other-
wise, if in an incorrect order, the activity is incomplete. Note that the 
user can freely remove placed stones when he/she thinks the place-
ment is wrong. 



frame has a resolution of 320*240. From the raw visual input 
sequences, starting times and ending times of the atomic 
actions were recognized automatically. Recognized atomic 
actions were coupled with time intervals, making the recog-
nition and feedback providing of composite activities possi-
ble.  Because of the simple domain, the recognition rate for 
atomic actions ‘move_stone’ and ‘remove_stone’ were 1. The 
stone blobs were clearly detected and tracked. As a result, the 
system was able to correctly recognize the activity ‘penta-
gram game’ regardless of the number of atomic actions.  

Based on the perfect recognition of atomic actions, our 
new feedback providing algorithm was tested. Figure 4 and 5 
shows the feedback generated as the sequence of input 
frames were given. The feedback contains hierarchical in-
formation. The feedback starts from telling the objective time 
intervals of a high-level activity that the user wants to ac-
complish. Then, the system states what sub-event must be 
started or ended in order to accomplish the activity. For 
example, in Figure 5, the system informs the user in what 
time interval the composite activity ‘pentagram game’ must 

be done. Then, the system mentions the composite activity 
‘safe’ is needed in time interval (8, t>15), in order to perform 
‘pentagram game’ in the time interval (3, t>15). The ‘undo-
ing’ activity is needed in time interval (10, t>10), and finally, 
the atomic action ‘remove’ is needed in time intervals (t1>15, 
t2>15) to complete ‘undoing’. 

5 Conclusions and Future Works 
The contribution of this paper is the framework and the 

algorithm to provide feedback for ongoing activities. The 
feedback contains simple instructions to start or end one 
sub-event of the activity, and it also contains instructions on 
how to start or end the sub-event itself. Based on the previous 
CFG-based representation and recognition of the activity, the 
system estimates the state of activity correctly, and calculates 
what sub-event must happen next. This is a novel hu-
man-computer interaction system based on the computer 
vision. The ability to provide feedback for complicated ac-
tivities represented in terms of time intervals distinguishes 
our work from other works on temporal planning using 
temporal networks. In future, we plan to test our system on 
more complex domains. 
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Figure 4: The raw sequence of input images. The ‘pentagram game’
activity is completed in the following order: move1-
safe(move4-remove4)-move2-move3-move4-move5.. 

Recognition results: 

Feedback provided at time point 15: 
Objective: 
PentagramGame (3, 15+) 
 Safe (8, 15+) 
  Safe4 (8, 15+) 
   Undoing4 (10, 10+) 
    Remove4 (15+, 15+) 
Therefore, do Remove(person1, place4)
now. 

Figure 5: The recognition results of the input shown in Figure 5.
Output of feedback providing system at time point 15 is also pro-
vided. The system clearly states hierarchical feedback. 
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