
Abstract
We introduce a human-computer interaction system
which collaborates with a user by providing feed-
back during user activities. The goal of the system is
to help a user complete a high-level activity that has
been represented hierarchically. While a user is
performing the high-level activity, our system ana-
lyzes what sub-events a user has already completed
and what sub-events are needed next in order for the
user to finish the activity. The representations of
human activities are constructed using a previously
developed context-free grammar based representa-
tion scheme. We focus on a game named ‘penta-
gram game’ to illustrate our system. In the experi-
ments, our system shows the ability to guide the
user to complete the ‘pentagram game’ by providing
explicit feedback. The feedback not only contains
atomic level instructions but also describes
higher-level long-term goals of the composite ac-
tivities.

1 Introduction
Humans understand the structure of activities, and they take
advantage of this knowledge of structure when performing
high-level activities. In the middle of performing a complex
activity, humans know exactly what sub-events have already
occurred and what sub-events need to be performed next.
They explicitly or implicitly know what to do next, consid-
ering what they have done in order to achieve the goal in the
past. For example, during a dance of an expert dancer, the
dancer explicitly or implicitly knows what his/her next move
should be. The dancer knows all his/her moves and their
order in the dancing activity, and uses this knowledge during
the dancing activity to decide various moves.

Motivated by the ability of human experts, we design a
human-computer interaction (HCI) system which collabo-
rates with a user to help the user complete high-level human
activities. Similar to human experts, the system has knowl-
edge on the structure of the activity that the user wants to
perform. Our system has a representation of an activity which
describes how the correct activity should look like tempo-
rally, spatially, and logically, and uses it to automatically

guide the user to perform the represented activity. While the
user is trying to perform the activity he/she wants to do, our
HCI system makes its own analysis on the current status of
the activity being performed, and produce feedback. If the
user does not perform the correct sub-event, the computer
interface alerts the user to the mistake. The goal is to enable
the system to provide feedback (or advice) to the user based
on its action representation and visual observations.

A HCI system helping a novice in the task of tightening
nuts while installing a car tire is a typical example that mo-
tivated the construction of our algorithm. The task is com-
posed of multiple sub-events (tightening a single nut) which
must follow a particular order: nuts must be tightened in the
order that is similar to drawing a star. Also, in this type of
tasks, a user can undo sub-events (un-tightening a nut) to
recover from his/her mistake. The detailed structure and
characteristic of this activity is discussed in the section 4. Our
system has the ability to guide a user not only to perform
sub-events in a correct order but also to undo sub-events
when he/she made a mistake. Our algorithm is designed to
provide feedback to accomplish those activities as well as
other general activities.

Previous HCI systems had mainly action-reaction based
models. Those systems recognize human actions and perform
particular reactions already encoded in the system. Research
on intelligent environments is a typical example of these
reactive systems. The goal of our system is a little different.
The goal of previous reaction based HCI systems is to pro-
vide correct reactions for corresponding actions, while that of
our system is to guide and instruct how to make a whole
high-level activity successful by providing feedback. Reac-
tion based HCI systems are not suitable in our case. In order
for reaction based HCI systems to guide a user to perform
represented activities containing concurrent as well as se-
quential sub-events, the system must specify all possible
steps and branches of the order of sub-events; the number of
cases becomes very large. In addition, the feedback provided
by our system is hierarchical, which is difficult for reaction
based systems to deal.

The main technical contribution made in this paper is on
the algorithm to provide feedback, which estimates the in-
ternal states of the incomplete composite activity and pre-
dicts what sub-event is needed in order to complete the action.

Robust Human-Computer Interaction System Guiding a User
by Providing Feedback

M. S. Ryoo and J. K. Aggarwal
Computer and Vision Research Center

Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, TX 78712

{mryoo, aggarwaljk}@mail.utexas.edu

IJCAI
2007

International Joint Conference on Artificial Intelligence
Hyderabad, India, January 2007 (IJCAI ‘07)

IJCAI
2007

In the case of simple sequential models, such as finite state
machines or hidden Markov models, estimating which state
and what to do is a simple task since they inherently contain
the information on the next occurring sub-event. However, in
the case of activities that can only be represented by highly
complex models, such as full first-order logic, this is no
longer a simple task. We use the human activity representa-
tion framework developed by Ryoo and Aggarwal [2006]. In
activities consisting of concurrent sub-events, it is not easy to
determine which point the system has reached, and what
sub-event is urgently needed in concurrent activities. In ad-
dition, in highly complex activities, some sub-events might
have an identical sequence in the beginning, confusing the
system in its decision as to the status of the activity.

2 Related Works
The reactive systems mentioned in the introduction have
similar aspects as our system. Since Coen [1998] presented
design principles of intelligent environments, several re-
search projects constructed HCI systems for intelligent en-
vironments, rooms, and workspaces [Hassens et al., 2002;
Kulkarni, 2002]. They introduced the concept of reactive
behavioral systems, extending previous rule-based reactive
systems. Their main goal is to make the HCI correctly re-
spond to relatively simple user behaviors or actions within
the activity context.

On the other hand, several works on surveillance and
children monitoring systems attempted to recognize hierar-
chical human activities [Minnen et al., 2003; Park and Ag-
garwal, 2006; Siskind, 2001]. Most of those works only
focused on after-the-fact detection of activities, and did not
attempt to provide feedback to the user who is performing the
activities. In the work done by Ryoo and Aggarwal [2006],
high-level human activities were represented hierarchically
using context-free grammar (CFG) syntax, specifying tem-
poral, spatial, and logical relationships among sub-events.
Their representation was similar to the first-order logic using
Allen’s temporal predicates [Allen, 1994], and recognition
was done hierarchically.

3 Feedback
The objective of our algorithm to provide feedback is as
follows: Given a situation where the user is in the middle of
performing an action, the system must analyze which
sub-events are already done and which sub-events need to be
done. The explicit feedback must be provided finally, stating
which sub-events are immediately needed and what is their
appropriate starting time and ending time.

We assume that the system initially has the language-like
representation of activities. We start with converting the
representation of activities into a directed graph representa-
tion, which makes the system able to apply our algorithm.
We then discuss principle theorems justifying our approach.
Finally, we present a general algorithm for providing feed-
back to hierarchical activities. The system must convey hi-
erarchical structure of activities and generate hierarchical
feedback.

3.1 Language-like Representations
In order for our HCI system to provide feedback, the system
must have a formal and complete representation of the ac-
tivity that a user is trying to accomplish. We use Ryoo and
Aggarwal’s CFG-based representation syntax to construct a
formal representation of activity by listing necessary tem-
poral and spatial conditions. It is always assumed that the
system has a programming language-like representation of
the activity it wishes to recognize.

Example 1 Let’s look into a spinning move in figure skating
as an example. Spinning moves that figure skaters do are
complex human activities, which involve both arm and leg
movements. Assume that our system wants to provide feed-
back (advice) to a skater to perform a common combination
spin, a camel-sit spin. In a camel spin, a skater must spin with
his/her leg and arm fully outstretched horizontally, into the
general shape of a ‘T’. In a sit spin, the skater must sit while
spinning. The camel-sit spin is a sequence of two spins: the
skater must initially spin with a ‘T’ shape, and then sit while
spinning. Our system must have the following CFG-based
representation before applying our feedback providing algo-
rithm:

Camel-Sit_Spin(person1) = (
 list(def(‘a’, Spin(person1)),
 list(def(‘b’, Sit(person1)),
 list(def(‘c’, Stretch_Arm(person1)),
 def(‘d’, Stretch_Leg(person1))))),
 and(equals(a, this),

and(and(during(c, a), during(d, a)),
 and(during(b, a),

and(meets(c, b), meets(d, b))))));

3.2 Directed Graph Representations
The language-like representation of activities is hu-
man-oriented. In order to estimate ongoing status of the ac-
tivity and to generate proper feedback, our system converts a
programming language-like activity representation into an
internal directed graph representation automatically using the
following algorithm.

In our directed graph representation, a vertex is a time
point (either starting time or ending time of a sub-event), and
an edge from vertex t1 to vertex t2 implies t1 < t2. The
purpose of this conversion is to calculate the necessary tem-
poral ordering between times associated with an activity’s
sub-events. Our feedback providing algorithm uses this di-
rected graph representation of human activities, since the
directed graph representation enables us to calculate the
order of two time points easily.

The procedure to convert our CFG-based representation
into a directed graph representation is presented below.

First, the system must convert Allen’s temporal predicates
for time intervals into equalities and inequalities among time
points. In our CFG-based representation, temporal relation-
ships are specified as a logical formula of Allen’s temporal
predicates. Following the definition of temporal predicates,
the representation can be converted into equalities and ine-
qualities among time points as follows:

Let a and b be the time intervals, (astart,aend) and (bstart,bend).
equals(a, b) => astart = bstart and aend = bend
before(a, b) => aend < bstart
meets(a, b) => aend = bstart
overlaps(a, b) => astart < bstart and bstart < aend
starts(a, b) => astart = bstart and aend < bend
during(a, b) => bstart < astart and aend < bend
finishes(a, b) => aend = bend and astart > bstart
Also, we add one trivial inequality astart<aend for all time

intervals a. As a result, logical concatenations of Allen’s
temporal predicates are converted into logical concatenations
of equalities and inequalities among time points.

Next, the system removes the predicate not, as follows.
not(t1<t2) => t2 < t1 or t1 = t2
not(t1=t2) => t1 < t2 or t2 < t1
The system then converts a logical formula into a dis-

junctive normal form (DNF). The end product is the dis-
junction of conjunctive clauses of pure equalities and ine-
qualities. This suggests that the activity representation can be
divided into several conjunctive clauses, where each clause
presents necessary temporal conditions for the activity. There
is no semantic difference between the DNF representation
and the directed graph representation we plan to construct.
For each clause, we formulate one directed graph to help the
user visualize the representation. The system first calculates
time points that are equal, checking the equalities in a clause.
The system assigns one vertex for a set of time points which
are equal. For example, if t1=t2 and t2=t3, only one vertex is
assigned for a set {t1, t2, t3}. Then, an edge is constructed
from a vertex v1 to a vertex v2, if ∃t1, t2 such that (t1∈v1
and t2∈v2). What this directed graph representation sug-
gests is that the activity can be completed if and only if an
integer value is correctly assigned for each vertex while
satisfying the temporal order of the graph.

Example 2 The language-like representation of the camel-sit
spin, which we discussed in example 1, may be converted
into a directed graph. First, the temporal predicates are con-
verted into equalities and inequalities.

(astart<aend and bstart<bend and cstart<cend and dstart<dend and
astart=thisstart and aend=thisend and astart<cstart and cend<aend
and astart<dstart and dend<aend and astart<bstart and bend < aend
and cend = bstart and dend = bstart)
This already is a DNF composed of only one conjunctive

clause. Figure 1 shows a final directed graph representation
of the example.

3.3 Consistent State and Feedback
This subsection describes principle definitions and theorems
which justifies for our algorithm theoretically.

In our directed graph representation, analyzing the status
of ongoing activity is identical to finding up to which vertices
the user has assigned a correct value. Since vertices corre-
spond to the starting or ending times of sub-events, assigning
values for vertices means that a user started and ended
sub-events in those time points. We denote a set of assigned
vertices as a state of the graph.

The system can calculate more than one possible assign-
ment, i.e. state, in one situation. There might be multiple
candidate assignments for each vertex, since sub-events can
occur multiple times. In addition, the system might leave
some vertices unassigned, leaving them to be assigned in the
future. Among many possible states, few of them satisfy the
temporal order specified in the graph. We call those states
consistent states.
Definition 1 (Assigned Vertex) We define a vertex assigned
vertex, if the system has assigned an identical value to all
time points associated with the vertex. We define a vertex
unassigned vertex, if the system did not assign any value to
the time points associated with the vertex. We define a vertex
half-assigned vertex, if the sub-set of time points in the vertex
are assigned while the others are unassigned.
Definition 2 (Consistent State) Let S be a set of assigned
vertices in a graph G. Let H be a set of half-assigned vertices
in G. We say the graph G is in the consistent state with the
assignment S and H if and only if

1. ∀ v, w: v, w ∈ S∪H, v<w if there exist a path from
v to w, and

2. ∀v: v ∈ S, (parents of v)⊂ S, and
3. ∀v: v ∈ H, (parents of v)⊂ S, and

The consistent state implies that there is no contradiction
among assigned values of the graph. The consistent state
clearly shows up to which point the activity has been proc-
essed. From Definition 2, we know that a graph without any
assignment is also in a consistent state. Among consistent
states, the states which we are particularly interested in are
maximum consistent states. If additional assignments based
on currently provided time intervals are not possible for a
consistent state, it is a maximum consistent state.

Calculating the maximum consistent states of an ongoing
activity is the key component not only for analyzing the
status of ongoing activity, but also for providing feedback.
We introduce two theorems which will lead us to use an
iterative approach to find maximum consistent states.
Theorem 1 Let U be a set of all vertices in a graph G in a
consistent state. Let v be a vertex, where v∈U-H-S and ∀
(parents of v) ∈ S. If we assign a value larger than (max of
parents of v) to the entire time points in v, then G is still in the
consistent state. If we assign the same value only to the
sub-set of time points in v, making the v half-assigned, then G
is still in the consistent state.
Theorem 2 Let v be a vertex, where v∈H. If we make vertex
v an assigned vertex by assigning identical values for all time
points in v, then G is still in the consistent state.

Figure 1: The directed graph representation for ‘Camel-Sit_Spin’.
Edges (as, ae), (as, bs), (ce, ae), and (de, ae) are omitted in the graph.

ce
=
de
=
bs

as
=

thiss

ae
=

thise

be cs

ds

Iteratively updating consistent states using Theorem 1 and
2 will lead us to the maximum consistent states. Assuming
that the system knows all starting times and ending times of
sub-events, the system can check whether further update is
possible or not. If possible, the system can assign the value of
detected sub-events for corresponding vertex. The only con-
straint is that the starting time and the ending time of the
same sub-event must match. For example, if there are two
time intervals (1, 5) and (3, 8) for the sub-event A, the system
cannot assign 1 for As and 8 for Ae. This can be checked by
applying either a dynamic programming algorithm or an
algorithm which traverses back when adding the ending time
of a sub-event. The resulting time complexity is either linear
time or quadratic time in each case.

Algorithm to calculate maximum consistent states
1 Initialize all vertices in the graph as unassigned vertices
2 do
3 Apply Theorem 1 and 2 to find a vertex v
4 Make v an assigned vertex or a half assigned vertex

accordingly
5 Update v.value as a list of possible assignments
6 for all i,
7 Update v.value[i].p as a list of assignments of

parent vertex which is less than v.value[i].
8 if v.value[i] is an ending time of a sub-event,
9 Traverse back the graph using value and

value[i].p of ancestors of v to check the
starting of the sub-event was assigned

10 if not, remove v.value[i] from v.value
11 while v ≠ NIL
12 return assignments of the graph

Even though maximum consistent states do not have any
contradiction among their assignments on vertices, it does
not imply that the future assignments without any contraction
are possible. Therefore, we must calculate maximum valid
consistent states based on the maximum consistent states.

Definition 3 (Valid Consistent State) We call a consistent
state as a valid consistent state, if it has at least one possible
combination of future assignments that satisfies temporal
relationships among vertices. The maximum valid consistent
states are the valid consistent states which do not have other
valid consistent states containing them.

Algorithm to calculate maximum valid consistent states
1 for each maximum consistent state with the assignment

S and H,
2 S’ = S ; H’ = H
3 do
4 Find as∈v such that

{v∈S’∧ ((ae is not assigned ∧ ae<= current
time point) ∨ (ae is assigned for v’∈H’ ∧
ae<current time point))}∨
{v∈H’∧ as<current time point}

5 S’ = S’ - (as ∪ descendent of v)
6 H’ = H’ - (as ∪ descendent of v)
7 while as ≠ NIL
8 return set of all S’ and H’

After calculating maximum valid consistent states, the
system can provide feedback to the user. The feedback is
one-step look-ahead information of the activity. By applying
Theorem 1 and 2 once more to calculated maximum consis-
tent states, the system is able to see what sub-events are
needed next in what time interval.

3.4 Hierarchical Feedback Algorithm
The actual algorithm for feedback providing is described in
this subsection, especially focusing on the hierarchical aspect
of our feedback.

Most high-level human activities have hierarchical struc-
tures; sub-events also have their own sub-events. This im-
plies the system needs a hierarchical algorithm to recognize
time intervals of sub-events, and suggests that hierarchical
feedback is needed.

Therefore, a recursive algorithm is designed, where the
base case is the feedback providing for atomic actions (di-
rectly telling the user to do the atomic action). For composite
activities, the system analyzes sub-events’ temporal struc-
tures using our directed graph representation of the activity,
and tells the user to start or end a particular sub-event, by
applying the algorithm presented in subsection 3.3. If that
sub-event is an atomic action, then the system can simply tell
the user to do the action. If that sub-event itself is a composite
activity, the system must tell the user how to complete that
sub-event also. That is, the system must examine sub-events
of the sub-event to provide hierarchical feedback. This
process continues until the atomicity is gained.

Example 3 Let’s look into the spinning moves in figure
skating once more. Assume that a user wants to perform the
camel-sit/sit spin. We already defined what the camel-sit spin
is and what the sit spin is. The camel-sit/sit spin is a combi-
nation of the camel-sit spin and the sit spin, where the skater
changes his/her axis feet between two spins. We can set the
sub-events of the camel-sit/sit spin to be the camel-sit spin
and the sit spin. Assume that the system wants to provide
feedback when the user just started to spin at time 1. Ap-
plying the approach presented in subsection 3.3 will result
with the system telling the user to ‘start the camel-sit spin,
after 1+’. However, that information is not sufficient. The
system must explicitly specify how to start the sub-event also,
as follows:

1. In order to do a camel-sit/sit spin at (1, 1+), do the
camel-sit spin at (1, 1+)

2. In order to do a camel-sit spin (1, 1+), do a stretch
_arm at (1+, 1+) and do a stretch_leg at (1+, 1+).

3. Stretch_arm and stretch_leg are atomic actions, so do
them now.

We always assume that the system knows time intervals of
sub-events already occurred by using the recognition algo-
rithm for the CFG-based representations. Further, we also
assume that the system knows the starting time of a sub-event
as soon as the sub-event started. That is, for each sub-event,
the system has a list of time intervals which specifies pre-
vious occurrences of the sub-event, and has candidate start-
ing times of the sub-event that are not completed.

Algorithm to provide hierarchical feedback:
1 Using previous recognition algorithms for the

CFG-based representation, find all possible starting
times and ending times of sub-events

2 Convert the CFG-based representation into directed
graph representations

3 Find the maximum valid consistent state closest to goal
4 Apply Theorem 1 and 2 once more to construct feedback.

When to start or end the corresponding sub-event is
specified

5 If the sub-event from step 4 is a composite itself, apply
the same procedure from step 1 to the sub-event

6 return the concatenated feedback

4 Experiments
We focus on the activity named ‘pentagram game’ for the
experiments. The ‘pentagram game’ is a composite action, a
sequence of moving or removing stones in a particular place,
similar to the activity of tightening the tire of a car. For our
experiments, we define three types of atomic actions that take
two parameters: move_stone(person1,place1), remove_stone
(person1, place1), and basic_safe(person1, place1). The first
atomic action describes a person1 moving a stone to place1.
The seconding atomic action describes a person1 removing a
stone from place1 and placing it to somewhere else. The last
atomic action describes that a person1 did not perform any
action related to place1. For the notational convenience, we
will simply write move_stone(person1, place#) as ‘move#’,
since only one user is moving the stones. Our system detects
the starting time and ending time of the atomic actions using
the computer vision techniques.

In order to make the high-level activity ‘pentagram game’
successful, the user must place all stones in the locations
following a particular order. Figure 2 describes the order of
the activity ‘pentagram game’. One important characteristic
of the ‘pentagram’ is that the user can always remove stones
to go back to previous the state, which makes the activity
more complex than it seems to be. For example, following
the sequence of atomic actions satisfies the ‘pentagram
game’ activity: move1-move3-remove3-move2-move3-move
4-move5. Even though move3-remove3 was interrupted in the
original sequence m1-m2-m3-m4-m5, this also is a ‘penta-
gram game’ activity since the person removed the stone from
place3 before other moves. Before defining the composite
activity ‘pentagram game’, we need to define move followed
by remove, such as m4-m5-rm4-rm5. We name this activity
as a composite activity Safe(person1, stone1, place1, place2,
place3, place4, place5). When playing ‘pentagram game’,
‘safe’ activity can be inserted between correct moves.

Therefore, the ‘pentagram game’ will be composed of five
‘move_stone’ atomic actions, and five ‘safe’ composite ac-
tivities: Safe-m1-Safe-m2-Safe-m3-Safe-m4-Safe-m5. Our
language-like representation for the activity ‘Penta-
gramGame’ is as follows. The actual representation of the
‘Safe’ is omitted due to the limitation of space.

PentagramGame(person1, place1, …, place5) = (
 list(def(‘x1’, move_stone(person1, place1)),

 def(‘x2’, move_stone(person1, place2)),
 def(‘x3’, move_stone(person1, place3)),
 def(‘x4’, move_stone(person1, place4)),
 def(‘x5’, move_stone(person1, place5)),
 def(‘s1’, Safe(person1, place1, …, place5)),
 def(‘s2’, Safe(person1, place1, …, place5)),
 def(‘s3’, Safe(person1, place1, …, place5)),
 def(‘s4’, Safe(person1, place1, …, place5)),
 def(‘s5’, Safe(person1, place1, …, place5))),

and(
starts(‘this’, ‘x1’), finishes(‘this’, ‘x5’),
meets(‘s1’, ‘x1’), meets(‘x1’, ‘s2’), meets(‘s2’, ‘x2’),
meets(‘x2’, ‘s3’), meets(‘s3’, ‘x3’),meets(‘x3’, ‘s4’),
meets(‘s4’,‘x4’), meets(‘x4’, ‘s5’), meets(‘s5’, ‘x5’))

);
We shot a video of users doing the ‘pentagram game’.

Some of them performed a complete sequence of successful
activities, while others were stopped in the middle of an
activity. For some sequences, mistakes were intentionally
made, such as inserting move4-move3 after initial move1.
The purpose of these erroneous insertions was to test whether
our feedback providing algorithm can correctly guide the
user to complete the overall activity. For example, if we fed
the input sequences of move1-move4-move3, the system must
guide user to start remove3 and start remove4.

Videos taken by the Sony VX-2000 were converted to a
sequence of frames with a frame rate of 10 per second. Each

Figure 3: The directed graph representation for ‘PentagramGame’.
The dotted vertices are unassigned vertices or half-assigned vertices.

s2s
=

x1e

x1s
=

s1e
=

thiss

s1s x2s
=

s2e

s3s
=

x2e

x3s
=

s3e

s4s
=

x3e

x4s
=

s4e

s5s
=

x4e

x5s
=

s5e

thise
=

x5e

assigned vertex
half-assigned vertex
unassigned vertex

Figure 2: The illustration of the setup for ‘pentagram game’. There
are five locations: place1, place2, …, and place5. Black stones are to
be placed on each location. If the placement is done in correct order
from 1 to 5, then the activity ‘pentagram game’ is complete. Other-
wise, if in an incorrect order, the activity is incomplete. Note that the
user can freely remove placed stones when he/she thinks the place-
ment is wrong.

frame has a resolution of 320*240. From the raw visual input
sequences, starting times and ending times of the atomic
actions were recognized automatically. Recognized atomic
actions were coupled with time intervals, making the recog-
nition and feedback providing of composite activities possi-
ble. Because of the simple domain, the recognition rate for
atomic actions ‘move_stone’ and ‘remove_stone’ were 1. The
stone blobs were clearly detected and tracked. As a result, the
system was able to correctly recognize the activity ‘penta-
gram game’ regardless of the number of atomic actions.

Based on the perfect recognition of atomic actions, our
new feedback providing algorithm was tested. Figure 4 and 5
shows the feedback generated as the sequence of input
frames were given. The feedback contains hierarchical in-
formation. The feedback starts from telling the objective time
intervals of a high-level activity that the user wants to ac-
complish. Then, the system states what sub-event must be
started or ended in order to accomplish the activity. For
example, in Figure 5, the system informs the user in what
time interval the composite activity ‘pentagram game’ must

be done. Then, the system mentions the composite activity
‘safe’ is needed in time interval (8, t>15), in order to perform
‘pentagram game’ in the time interval (3, t>15). The ‘undo-
ing’ activity is needed in time interval (10, t>10), and finally,
the atomic action ‘remove’ is needed in time intervals (t1>15,
t2>15) to complete ‘undoing’.

5 Conclusions and Future Works
The contribution of this paper is the framework and the

algorithm to provide feedback for ongoing activities. The
feedback contains simple instructions to start or end one
sub-event of the activity, and it also contains instructions on
how to start or end the sub-event itself. Based on the previous
CFG-based representation and recognition of the activity, the
system estimates the state of activity correctly, and calculates
what sub-event must happen next. This is a novel hu-
man-computer interaction system based on the computer
vision. The ability to provide feedback for complicated ac-
tivities represented in terms of time intervals distinguishes
our work from other works on temporal planning using
temporal networks. In future, we plan to test our system on
more complex domains.

References
[Allen, 1994] J. F. Allen, Maintaining knowledge about

temporal intervals, Communications of the ACM,
26(11):832-843, 1983.

[Bobick et al., 2000] A. Bobick, S. Intille, J. Davis, F. Baird,
C. Pinhanez, L. Campbell, Y. Ivanov, A. Schutte, and A.
Wilson. The KidsRoom. Communications of the ACM,
43(3). 2000.

[Coen, 1998] M. Coen, Design principles of intelligent en-
vironments, Proceedings of AAAI’98, 1998.

[Hassens et al., 2002] N. Hanssens, A. Kulkarni, R. Tuchinda,
and T. Horton, Building Agent-Based Intelligent Work-
spaces. Agents for Business Automation Conference
Proceedings.

[Kulkarni, 2002] A. Kulkarni, “Design Principles of a Reac-
tive Behavioral System for the Intelligent Room,” in Bit-
stream: The MIT Journal of EECS Student Research,
2002.

[Minnen et al., 2003] D. Minnen, I. Essa, T. Starner, Ex-
pectation Grammars: Leveraging High-Level Expecta-
tions for Activity Recognition, CVPR’03.

[Park and Aggarwal, 2006] S. Park and J. K. Aggarwal,
Simultaneous tracking of multiple body parts of inter-
acting persons, CVIU 102(1), pp. 1-21, April 2006.

[Ryoo and Aggarwal, 2006] M. S. Ryoo and J. K. Aggarwal,
Recognition of Composite Human Activities through
Context-Free Grammar based Representation, CVPR,
2006, pp. 1709-1719, New York, NY.

[Siskind, 2001] J. M. Siskind, Grounding the Lexical Se-
mantics of Verbs in Visual Perception using Force Dy-
namics and Event Logic, JAIR, 15(2001) 31-90.

Figure 4: The raw sequence of input images. The ‘pentagram game’
activity is completed in the following order: move1-
safe(move4-remove4)-move2-move3-move4-move5..

Recognition results:

Feedback provided at time point 15:
Objective:
PentagramGame (3, 15+)
 Safe (8, 15+)
 Safe4 (8, 15+)
 Undoing4 (10, 10+)
 Remove4 (15+, 15+)
Therefore, do Remove(person1, place4)
now.

Figure 5: The recognition results of the input shown in Figure 5.
Output of feedback providing system at time point 15 is also pro-
vided. The system clearly states hierarchical feedback.

m4

(16, 22) (10, 15)

m1

(3, 8)

Safe m2

(28, 31)
rm4

(44, 48)

m4

(39, 43)

m3

(34, 37)

m5

