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Abstract

In this paper, we present a novel human activity recogni-
tion approach that only requires a single video example per
activity. We introduce the paradigm of active video com-
position, which enables one-example recognition of com-
plex activities. The idea is to automatically create a large
number of semi-artificial training videos called composed
videos by manipulating an original human activity video. A
methodology to automatically compose activity videos hav-
ing different backgrounds, translations, scales, actors, and
movement structures is described in this paper. Further-
more, an active learning algorithm to model the temporal
structure of the human activity has been designed, prevent-
ing the generation of composed training videos violating the
structural constraints of the activity. The intention is to gen-
erate composed videos having correct organizations, and
take advantage of them for the training of the recognition
system. In contrast to previous passive recognition systems
relying only on given training videos, our methodology ac-
tively composes necessary training videos that the system
is expected to observe in its environment. Experimental re-
sults illustrate that a single fully labeled video per activity is
sufficient for our methodology to reliably recognize human
activities by utilizing composed training videos.

1. Introduction

Human activity recognition is an active research area
with a variety of applications. In the past few years, com-
puter vision researchers have intensively explored recog-
nition of actions, taking advantage of large-scale public
datasets (e.g. the KTH dataset containing 2391 videos
[16]). The paradigm of extracting features from a large
set of training videos and statistically learning actions from
them has been dominant, and many discriminative and gen-
erative approaches have been proposed [5, 10, 21]. Re-
searchers have further extended this paradigm to analyze
action videos with more complex backgrounds and cam-
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Figure 1. Example composed videos of ‘shaking hands’ with dif-
ferent backgrounds, locations, scales, actor clothings, and move-
ment variations. The videos have been automatically generated by
manipulating the original video. Note that the composed videos
are showing various possible temporal structures of the shaking
interaction : e.g. the person 1 is stretching/withdrawing his arm
first, the person 2 is doing it first, they are doing it simultaneously,
the person 1 is doing it more rapidly, and so on.

era movements, such as movie clips [9]. Complex human
activities involving multiple persons (e.g. human-human
fighting) have been recognized successfully as well [13],
illustrating its applicability to surveillance systems. The as-
sumption is that abundant training videos are provided to
learn properties of human activities statistically.

However, in many real-world environments (e.g. surveil-
lance), we seldom have enough training videos to learn
complex human activities. Activities have multiple vari-
ations, and we only have one or two exemplary training



videos available per activity. For example, an abnormal
activity of ‘stealing’ does not occur frequently, making its
videos rare. This implies that collecting a large set of re-
alistic training videos, which are required for the most of
existing recognition approaches to capture activities’ statis-
tics, is difficult. A recognition system must possess an abil-
ity to process high-level activities from videos with various
settings (e.g. illuminations and backgrounds) even when a
small number of videos are given.

In this paper, we propose a methodology to learn and rec-
ognize human activities from an environment where only
a single video per activity is provided. We introduce a
new activity recognition paradigm that takes advantage of
an active video composer, which automatically generates a
large number of semi-artificial videos adaptive to its envi-
ronment. Instead of solely relying on a single video to train
the system, the idea is to compose various activity videos by
manipulating the original video. Composed videos with ac-
tors having different clothing colors, locations, scales, and
motion variations are generated while making their back-
ground to be identical to the testing environment. An active
learning algorithm has been designed to ensure that the gen-
erated videos satisfy the temporal constraints of the activity.
Figure 1 shows example composed videos.

The intuition behind our approach is to automatically
generate diverse training videos that the system is expected
to observe from the given scene. We represent an activity
video as a composition of its scene background, actor loca-
tions, and the activity’s sub-events, and present a methodol-
ogy to generate composed videos given any arbitrary repre-
sentation. That is, our video composer not only changes
static components like the video’s background from the
original (i.e. real) video, but also modifies each sub-event’s
occurring time and speed to generate new videos with dif-
ferent structures. For example, ‘shaking hands’ videos
are composed while making the ‘stretching’ of one per-
son slow/fast, changing the temporal order of two persons’
‘stretching’s, and so on. Multiple activity videos with dif-
ferent temporal organizations are composed while consider-
ing other factors effecting video appearances such as cloth-
ings and scales.

An active learning algorithm has been designed to dis-
tinguish valid activity structure representations from invalid
representations. The purpose is to make the video composer
learn to discard abnormal video constructions and to pro-
vide only the videos with the correct activity. For example,
in the interaction of a person ‘pushing’ another, the sub-
event of one person being ‘pushed away’ must occur right
after the other ‘stretching an arm’. Otherwise (e.g. a person
moved away 3 seconds before the other stretched his/her
arm), the video violates the constraints of the activity, and
becomes an abnormal video or a video with a different ac-
tivity. Our algorithm learns to identify such abnormal struc-
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Figure 2. The left figure shows example subspaces of human ac-
tivities, estimated using a single example per class. Black dots
correspond to real training examples (i.e. videos), and dotted lines
describe subspace boundaries. Conceptually, any point inside each
region corresponds to a particular activity video. In the left figure,
a subspace boundary of an activity is unclear (e.g. shaking hands),
since only one example is provided. Our goal is to automatically
generate the orange dots shown in the right figure (i.e. composed
videos), so that the system is able to take advantage of them for
more reliable learning of human activities.

tures, enabling the recognition system to take advantage of
composed training videos with valid representations only.

The advantage of our video composition paradigm is that
we are able to construct a large training set with multiple
videos having different activity structures, even with a sin-
gle video example. Once the learning is done, our video
composer generates composed activity videos fully auto-
matically. Only the videos satisfying the structural con-
straints of the activity are composed, and they are used for
the training of the recognition system. Figure 2 illustrates
the general idea behind our approach. Up to our knowl-
edge, our paper is the first activity recognition paper to take
advantage of composed videos. We also believe that our pa-
per is one of the first papers to verify the benefits of active
learning algorithms for the human activity recognition.

2. Related Works

Activity recognition. Human activity recognition has
widely been studied by computer vision researchers since
early 1990s [20]. Action recognition methodologies uti-
lizing 3-D spatio-temporal (XYT) local features extracted
from videos [5, 8] have particularly been popular in the
past few years. Generative approaches constructing statisti-
cal models of actions [10, 21] as well as discriminative ap-
proaches searching for decision boundaries [5, 9, 13] have
been developed, using the 3-D XYT features. Several public
datasets have been established, mostly focusing on actions
of single persons [16, 2]. In addition, high-level activity
recognition approaches to analyze suspicious and abnormal
activities have gained a large amount of interest [13, 12].
Many of these approaches assume that the representation of
the human activities has been encoded by human experts,
or require a large amount of training videos similar to the
simple human action recognition cases.



Recently, there also has been an attempt to recognize hu-
man actions from a single example [17]. Their approach
focuses on extracting specific feature patterns from a single
video example, constructing one template per action. How-
ever, their system was limited in its ability to process com-
plex human activities having motion variations: Complex
humans activities with multiple actors often have several
structural variations, making the extraction of the represen-
tative pattern from a single video infeasible.

Synthetic data. Even though the paradigm of using com-
posed videos for the activity recognition has not been ex-
plored in depth previously, the idea of using fully synthe-
sized data has been employed in other fields. Data mining
researchers [4] have developed the idea of ‘oversampling’
data from a modeled probability distribution to increase the
number of training samples from a minority class (which
often is more important). There also has been an attempt to
use sketched artificial images for training object recognition
systems [18]. Furthermore, [11] constructed an artificial
training set for a human interaction recognition, by extract-
ing features directly from movements of synthetic agents in
a 2-D plane. Even though the agent movements have been
encoded using human knowledge, it has shown the possibil-
ity that simulated movements may be used for the training.

Computer vision researchers also have studied method-
ologies for the image composition itself. [7] developed a
methodology to synthesize images and videos. In addition,
a robust image composition algorithm which is able to paste
video objects to background images was presented in [1].
[6] showed the potential that simple motion (e.g. running)
of a person can be composed. Their system was able to
synthesize animated videos from the learned motion model.

Active learning. Active learning, the learning process in-
volving user interventions, has been popularly used for ap-
plications with limited amount of human resources [19, 15].
Recently, several computer vision researchers have adopted
the active learning algorithms for recognizing objects from
images. The active learning methodologies with support
vector machines (SVMs) applied to the object recognition
(e.g. [3]) have shown particularly successful results. In ad-
dition, [22] have suggested that active learning is able to
benefit processing videos, such as recognizing people ap-
pearing in videos.

3. Video Composer
In this section, we describe our methodology to compose

new activity videos based on an original video. Our video
composer generates multiple videos with varying activity
structures, actor locations, scales, and clothings, so that they
can be used for the recognition of the activity. We first de-
scribe how we represent an activity video in terms of its
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Figure 3. An example video representation of a person ‘pushing’
the other. The ‘pushing’ is composed of three sub-events, a person
‘stretching’ his/her arm (s1), the person ‘withdrawing’ it (s3), and
the other person being pushed away (s2). A background image,
sub-event videos, spatial bounding boxes, and time intervals spec-
ifying the temporal ordering among the sub-events are presented.

components in Subsection 3.1. Re-generating new videos
while modifying the components of an original video rep-
resentation provides us various composed videos, which we
discuss in Subsection 3.2.

3.1. Video Representation

We represent an activity video as a composition of its
scene background and the foreground videos of the sub-
events composing the activity. Sub-events are atomic-level
actions (e.g. stretching an arm, withdrawing an arm, and
moving forward), each performed by its corresponding ac-
tor in the scene. For example, a human-human interaction
of ‘pushing’ is composed of multiple sub-events including
one person ‘stretching an arm’ and the other person ‘pushed
away’ as a consequence. The motivation is to maintain
the foreground video segments corresponding to these sub-
events, and generate videos by pasting them into the back-
ground. Essentially, we are decomposing the entire video
into multiple components describing salient (and semanti-
cally important) movements, so that the video composer is
able to reconstruct it by pasting them to the background.

For each sub-event, a sequence of background subtracted
images (i.e. a foreground video) illustrating the actor move-
ments is maintained. In addition, a bounding box describing
‘where to paste the sub-event video’ spatially and a time in-
terval (i.e. a pair of starting time and ending time) describ-
ing ‘which frames to paste the video’ are associated per sub-
event as its spatio-temporal region. Modifying these will
change the structure of the activity, enabling us to generate
various composed videos with different temporal organiza-
tions. Figure 3 shows an example video representation.

Formally, we represent an activity video V by its three
components V = (b,G, S). b is the background image.
G describes the spatial location of the activity’s center, the
spatial scale, and the temporal length of the video: G =
(c, d, o). S is a set of sub-events, S = {s1, s2, ..., s|S|},
where si is the ith sub-event. Each si contains four types
of information: si = (ei, ai, ri, ti). ei is the sequence
of foreground images obtained during the sub-event, ei =
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ai indicates the actor id performing the sub-event. ri is the
normalized bounding box specifying the sub-event’s spa-
tial location, which is described relatively with respect to
c: ri = (rlefti , rrighti , rheighti , rwidth

i ). ri multiplied by d
specifies the relative occurring region of the sub-event si in
the video scene. ti = (tduri , tloci ) is a normalized time in-
terval specifying the center of the interval and its duration.
Let the starting time of the ith sub-event be starti and the
ending time of it be endi. Then,

tloci =
starti + endi

2 · o

tduri =
endi − starti

o
.

(1)

That is, we are normalizing the occurring time and the dura-
tion of a sub-event with respect to o. Thus, the real duration
of the sub-event in the video is computed as tduri · o.

The procedure to construct the video representation Vori

from an original video is straight forward. We assume that
the background image b is provided or automatically esti-
mated. In the original video, the spatial scale d is always
defined to be 1. o is computed to be the number of frames
of the given video. The time intervals of the sub-events are
also assumed to be provided or automatically estimated, and
the other parts of the representation will be obtained based
on them. The system subtracts foreground regions using
the given background image b, and tracks each individual
appearing in the scene. The bounding box is calculated per
sub-event so that the acting person is included in it spatially
during the entire time period of the sub-event. c is computed
by averaging the coordinates of all bounding boxes, and we
subtract c from each of the boxes to get ri. A foreground
image inside the region ri at each frame of the given time
interval is concatenated to form ei.

Once the representation is constructed, we are able to
re-generate the video corresponding to the representation.
Furthermore, foreground videos of the sub-events, ei, are
maintained independently in our video representation, sug-
gesting that we are able to paste them to any desired spatio-
temporal regions (ri, ti). This enables the composition of
a video with a different temporal organization of the sub-
events, generating a new video with a different activity
structure.

3.2. Video Composition

In this subsection, we present a methodology to compose
a video sequence from its representation. The motivation is
to generate composed videos from multiple representations,
V s, produced by giving variations to the original video rep-
resentation Vori. We discuss how a video is composed from
an arbitrary representation V with a particular background,

ei : b :

(r1, t1)

Composed video :

(r2, t2)

Figure 4. A video is generated from the representation by pasting
each ei to the background. The spatio-temporal location to paste
the sub-event video is specified with (ri, ti). The pasting process
of the third sub-event, a person ‘withdrawing’ his/her arm, is omit-
ted here.

actor location, scale, and temporal structure (i.e. b, c, d, o,
ri, and/or ti).

For any given representation V , a new video sequence
is composed by pasting all sub-event videos (i.e. ei) to
the background image b. The location to paste each fore-
ground video within the background is specified in ri, and
the frames to paste must be chosen considering ti. In ad-
dition, the pasting process must be spatially translated by c
and scaled by d, generating a video with the length o. Figure
4 illustrates an example video composition process.

More specifically, the spatial locations and the frames to
paste a sub-event to generate the video for V is calculated
as follows: The spatial bounding box to paste the sub-event
si is computed by multiplying ri by d (i.e. scaling) and then
adding c to the location of the box ri (i.e. translating).

boxi = d · ri + c. (2)

The sub-event video ei must be pasted to the frames be-
tween the frame number starti and endi:

starti = btloci · o−
tduri · o

2
c

endi = btloci · o+
tduri · o

2
c.

(3)

For each sub-event si, the video composer pastes the frame
eji of the sub-event video to the kth frame of the video being
composed. That is, for every frame k where starti ≤ k ≤
endi, we calculate the corresponding frame j of the sub-
event video while considering the overall duration of the
sub-event tduri .

j = b (k − starti) · ni

tduri · o
c. (4)

In addition, the video composer pastes the actor for
frames between sub-events. The assumption is that the ac-
tor is staying stationary if no sub-event is performed, since
all his/her salient movements have already been encoded as
sub-events. For each actor, the video composer estimates



his/her appearance in every frame l that has not been cov-
ered by any sub-event. Basically, it searches for the tempo-
rally nearest sub-event sq , and assumes that the appearance
of the actor is identical to that of the closest frame of the
sub-event. That is, we paste e

nq
q to frame l if endq is less

than l, and paste e0q otherwise.
Furthermore, our system also supports various image op-

erations such as flipping and color changing, in order to in-
crease the diversity among composed videos. The video
composer is able to flip the foregrounds being pasted, if
necessary. Also, color changes of actors’ clothings are sup-
ported: A color clustering algorithm is applied to ei to de-
tect and track color blobs of the actors. Based on the tracked
blobs, our video composer changes the color intensities of
the upper-body blobs and the lower-body blobs randomly.
An overall intensity of the foreground is also adjusted con-
sidering the background illumination.

4. Active Structure Learning
In this section, we present a methodology to learn a de-

cision boundary distinguishing correct activity representa-
tions from abnormal representations. In principle, the video
composer presented in the previous section is able to gen-
erate a video from any given representation V . However,
not every temporal structure, which essentially is a set of
sub-events’ time intervals, is possible for the activity. For
example, in the case of ‘shaking hands’, the timing of the
sub-event ‘withdrawing an arm’ of one person must not oc-
cur before the other person ‘stretching an arm’. If this is vi-
olated, the representation must be treated as another activity
or irrelevant noise. The system must estimate the decision
boundary specifying which temporal structure is valid for
the activity, so that it is able to compose videos only from
the representations within the boundary.

One of the major difficulties in estimating the decision
boundaries is that the system has a limited amount of train-
ing examples: The system only has a single positive exam-
ple, Vori, and few trivial negative examples are known (e.g.
a representation with all time intervals’ durations set to 0).
In order to overcome such difficulty, we have designed an
active learning algorithm that takes advantage of the video
composer described in the previous section. Our algorithm
‘actively’ analyzes the structure space by generating neces-
sary proposal videos having various structures. The deci-
sion boundary is updated iteratively based on the labels of
the proposal videos, which is obtained from an oracle (i.e.
a human). Videos are generated and labeled based on their
necessity, in contrast to previous passive learning method-
ologies.

We model a video representation’s temporal structure as
a vector concatenating all sub-events’ time intervals as well
as the activity’s overall speed. That is, we concatenate o
and all ti to form a vector x with length 2 · |S| + 1. In
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Figure 5. An overall learning process of our system. At each it-
eration, a query (i.e. a temporal structure) is given to the video
composer to generate a composed video. The video is given to an
oracle (i.e. a human) to obtain the label specifying whether the
generated video contains the valid activity or not. The classifier is
updated based on the label, for the next iteration.

this 2 · |S|+ 1 dimensional space, the goal is to construct a
classifier deciding whether a given vector x corresponds to
the correct structure of the activity or not.

The overall flow of our active learning algorithm is as
follows. At each iteration, the system calculates the deci-
sion boundary based on the labeled structures (i.e. vectors)
it already has. Next, the system randomly samples several
proposal video structures, xm, and choose one among them
which is believed to be the most informative. A video is
composed based on the chosen vector xmin, by modifying
Vori. Then, the system requests the label of the composed
video (whether the video contains a correct activity or not)
from a human teacher. That is, it generates a single query
per iteration. The labeled vector is provided to the system
as a new example, leading to the next iteration which will
calculate a new decision boundary. Figure 5 illustrates such
process.

We use a support vector machine (SVM) classifier for
our active learning. A SVM classifier divides the entire
space with a hyperplane (i.e. the decision boundary). In
our SVM-based active learning, the data point nearest to
the decision boundary is assumed to be the most informa-
tive, similar to [15]. This heuristic have been confirmed to
be computationally efficient (only a dot product computa-
tion is required) and effective.

Let w · x + a = 0 be the hyperplane separating valid
and non-valid structures. Our system searches for the vector
xmin minimizing the distance between the vector and the
hyperplane:

xmin = argminxm

w · xm + a

||w|| (5)

where each xm is a uniformly sampled vector. The algo-
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Figure 6. An example decision boundary and video structure sam-
ples. Blue circles indicate structures with positive labels (i.e. they
are valid structures), and red crosses indicate invalid structures.
Purple line is a hyperplane separating valid and invalid structures
(i.e. the decision boundary). Green triangles are the candidate
structures that have not been labeled. The goal is to choose and
label one of those ambiguous structures (i.e. green triangles), to
update the decision boundary for the next iteration.

rithm chooses xmin, the most informative vector among
randomly sampled vectors. The SVM classifier is updated
by labeling xmin. Figure 6 shows example vectors and a
SVM boundary.

Any video representation with the structure sampled in-
side the learned decision boundary will produce a valid ac-
tivity video satisfying the constraints. This enables random
composition of multiple activity videos with varying struc-
tures.

5. Adaptive Training Set Construction

This section describes a methodology to automatically
construct a set of composed training videos for the activ-
ity recognition. Using the methods from the previous sec-
tions, we compose videos with various sub-event locations,
scales, and temporal structures while making their back-
grounds to be identical to the testing environment. The idea
is to compose activity videos that are expected to be ob-
served from the current scene, so that the training videos
tailored for the scene are generated.

We generate training videos by randomly sampling pos-
sible representations. The detailed procedure for our train-
ing set construction is as follows. Given the original video
representation Vori, we make a new video representation V
while copying the sub-event videos ei and their spatial lo-
cations ri from Vori. As discussed above, the background
image b of V is set to the current background (i.e. testing)
image. The temporal structure (i.e. o and ti) of the represen-
tation is randomly selected while discarding the abnormal
structure: The learned SVM classifier (i.e. Section 4) is able
to judge whether the temporal structure will form a correct
activity video or not. Only the video representations that
satisfy the learned activity structure will be sampled, and
their videos will be generated. The location c and scale d
of the video V are also chosen randomly. Image operations
(e.g. flipping) mentioned in Subsection 3.2 are randomly

applied as well, increasing the diversity. This process of
creating new representation V and composing a video from
it is repeated multiple times, to construct a large training
set.

As a result, a set of training videos with various appear-
ance and motion is produced for each activity. In principle,
our approach presented throughout the paper is able to sup-
port any activity recognition methodology by providing the
constructed training set. That is, our approach for solving
the problem of one-example activity recognition is to pro-
vide a new training set with abundant composed examples,
making our active video composition applicable to various
recognition systems.

6. Experiments
Here, we evaluate our recognition approach utilizing

the active video composition. We confirm the benefits of
our approach by implementing several activity recognition
methodologies with and without our video composition.
When training the systems, only a single training video
taken from a different background with different actors is
provided per activity. The details of the system implemen-
tation is presented in Subsection 6.1, and the results are dis-
cussed in Subsection 6.2.

6.1. Implementation

In order to measure the effectiveness of our active
video composition approach, we constructed various activ-
ity recognition systems with and without our video com-
poser. Multiple classifiers using different types of features
have been implemented, and they have been trained with a
set of composed videos or only with a set of original videos.

Each implemented system extracts one of the two types
of spatio-temporal local features, [5] and [8], to recognize
activities. These features have been confirmed to be ro-
bust to background changes and camera movements. We
apply a feature extractor to each 3-D volume constructed
by concatenating video’s image frames along time axis, ob-
taining a set of 3-D XYT points with salient appearance
changes. Next, a feature point is categorized into multi-
ple types (e.g. 400) based on the appearance of the local
3-D volume around it. As a result, each system constructs
a histogram of feature appearance types per video, which
essentially is a feature codebook.

The systems categorize their codebooks into classes of
human activities. Various classifiers have been imple-
mented and tested, including basic K-nearest neighbor clas-
sifiers and SVM classifiers. In the basic K-nearest neigh-
bor classifier, the similarity between a testing video and a
composed training video is measured by computing the lin-
ear distance between between two codebooks. The recog-
nition is performed by examining the labels of the K



most similar training videos. SVM classifiers which es-
timates hyperplanes separating activity classes have also
been implemented. In addition, we have implemented a
non-hierarchical version of the spatio-temporal relationship
match (STR match) [13]: The implemented STR match
measures structural similarity between two videos by an-
alyzing feature relations while using SVM classifiers.

As a result, a total of 6 systems (listed in Table 1) have
been implemented and tested with/without our video com-
position. The reason why we have chosen discriminative
classifiers is that they inherently possess an ability to per-
form the classification from few examples (e.g. not many
training examples are required to construct a K-NN or
SVM classifier), enabling us to test the methodologies even
with a single video. These systems implemented in our ex-
periment represent the state-of-the-art activity recognition
approaches using spatio-temporal features.

6.2. Evaluation

We have tested the performances of the systems on a
high-level human activity recognition task. Videos of six
types of human-human interactions, shaking hands, hug-
ging, kicking, pointing, punching, and pushing, are clas-
sified using the systems. These interactions are complex
human activities performed by multiple actors, and their
recognition is a challenging problem especially when a lim-
ited amount of training videos are provided. Furthermore,
most of these interactions share common movements such
as ‘stretching’ and ‘withdrawing’, preventing the classifica-
tion. For our experiments, we have used two different exist-
ing datasets with distinct characteristics, one for the testing
and one for the training. The objective is to emulate real
world scenarios where training and testing videos have dif-
ferent properties (e.g. backgrounds).

We used the UT-Interaction dataset #1 from the SDHA
2010 activity recognition contest [14] as our test set, which
was also used in [13]. This public dataset consists of videos
of the above-mentioned six types of interactions, contain-
ing 10 executions per activity. Videos were taken with 10
different settings, each having different background, scale,
illumination, and actors. In addition, irrelevant pedestrians
are present in the videos. In our experiment, we have used
the segmented version of the dataset where each video seg-
ment contains only one activity execution. Video regions
are cropped spatially and temporally, giving us a total of 60
various-sized videos with 15 fps. The entire videos have
been used for the testing.

As an original training video, we have selected one se-
quence per activity from the dataset of [12]. A label in-
dicating the activity type, its spatial location, and its time
interval are provided per video. Further, sub-events com-
posing the activities have been labeled, so that the system is
able to compute the representation of the video. Each activ-

Figure 7. Example snapshots of composed training videos. The
figure only shows the activity regions cropped from the entire
videos.

ity is decomposed into 2 to 4 different atomic-level actions
organized sequentially and concurrently, such as a person
‘stretching’ an arm and a person ‘moving’ forward. Back-
ground images of the training videos have been provided as
well. The representations have been constructed automat-
ically based on the backgrounds and the sub-event labels,
following the algorithm mentioned in 3.1.

For the video composition, the active learning algorithm
of Section 4 has been applied to train the SVM classifier
modeling each activity’s structure. Each SVM classifier has
been trained with 20 iterations (i.e. 20 queries were given
to a human sequentially, obtaining their labels). The com-
posed training set has been created by generating activity
videos with rough background image segments of the test
set (Figure 7).

Table 1 compares the activity classification accuracies
of the systems. Each system has been tested with four dif-
ferent training settings: using a single real training video
per activity, using 10 real training videos from [12] per ac-
tivity, using 10 composed videos generated from a single
real video per activity, and using 30 composed videos also
generated from a single real video per activity. The result
confirms the benefits of our active video composition: The
systems with composed videos performed much better than
the systems without them (e.g. 0.317 vs. 0.533). Even
though the backgrounds, locations, scales, actor clothings,
and their movements in the testing videos were very dif-
ferent from those in the training video, our approach with
the video composer was able to recognize human activities
reliably.

In addition, we are able to observe that the performances
of the systems with 10 composed videos are higher than
those with 10 real videos, even though only one real video
was used to generate the composed videos. This is due
to our method’s ability to compose training videos tailored
for the testing environment (e.g. background). Our video
composer takes advantage of its knowledge on testing en-
vironments such as lighting conditions and backgrounds,
generating training videos much more similar to the testing
videos then the original videos.
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Figure 8. Accuracies of the systems with respect to the number of
composed videos. We only present results of the systems using
[8]’s features. Those with [5] showed similar behavior. The per-
formances have been averaged for four training set constructions.

Table 1. Activity classification accuracies of the systems tested on
the UT-Interaction dataset #1 [14].

Systems 1 real 10 real 10 comp. 30 comp.
Random chance 0.167 0.167 0.167 0.167

[5] + K-NN 0.300 0.317 0.417 0.433
[5] + SVM 0.300 0.383 0.433 0.450

[5] + STR match 0.333 0.433 0.450 0.467
[8] + K-NN 0.300 0.350 0.400 0.450
[8] + SVM 0.300 0.383 0.450 0.500

[8] + STR match 0.317 0.433 0.467 0.533

We also have conducted the experiments to measure the
recognition accuracies with respect to the number of com-
posed training videos used per activity. Figure 8 shows
the experimental results. The increase in the number of
composed videos benefits the system performances, justi-
fying our overall paradigm of generating various composed
videos. The video composition itself runs in real-time with
our unoptimized C++ codes (Intel i7 940 CPU used). The
recognition was also performed in real-time, except for the
adopted feature extraction part.

7. Conclusions

We have presented a new approach to recognize a human
activity using a single video example. We introduced the
paradigm of utilizing composed videos for the recognition,
which are generated by manipulating an original video. A
methodology to construct representations describing activ-
ity videos, and that to generate composed videos from the
representations have been discussed. In addition, an active
learning algorithm to learn the structure of the activity has
been designed. As a result, our system generated a training
set of composed activity videos tailored for the given envi-
ronment. Experimental results confirmed that our approach
benefits the recognition of complex human activities by pro-
viding diverse composed videos. In the future, we plan to
extend our active video composition to take advantage of
training videos created with fully synthetic 3-D agents. Cre-
ating activity videos with CG animations will enable us to
handle 3-D actor/camera movements, recognizing a wider
range of human activities.
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