
View Independent Recognition of Human-Vehicle Interactions using 3-D Models

Jong T. Lee1, M. S. Ryoo1,2, and J. K. Aggarwal1
1Computer & Vision Research Center / Department of ECE, The University of Texas at Austin, U.S.A.

2Robot Research Department, Electronics and Telecommunications Research Institute, Korea
jongtaeklee@mail.utexas.edu, mryoo@etri.re.kr, aggarwaljk@mail.utexas.edu

Abstract

Recognition of human-vehicle interactions is a challeng-
ing problem. The occlusion by vehicles and motion of hu-
mans contribute to the difficulty. In this paper, we present
a novel approach for the view independent recognition of
human-vehicle interactions. The shape based matching of
synthetic 3-D vehicle models is used for accurate local-
ization of vehicles and for the specification of regions-of-
interest (e.g. doors). In the proposed method, the system
transforms the optical flow field based on the position of
doors and the direction of a vehicle. This enables the sys-
tem to extract view-independent features. Histogram of ori-
ented optical flow (HOOF) and histogram of oriented gra-
dient (HOG) characterize the optical flow and gradient, re-
spectively. A support vector machine (SVM) classifier is
trained for these view-independent features. Consequently,
the system recognizes the interactions of a person entering a
vehicle and getting out of a vehicle. Our method is applied
to a dataset of human-vehicle interactions taken from 8 dif-
ferent viewpoints, composed of 120 video clips. The experi-
mental results show that the system recognizes sequences of
complex human-vehicle interactions with a high recognition
rate of 86 %.

1. Introduction
Over the last decade, considerable effort has been de-

voted to recognize human activities. However, it still re-
mains a challenging problem in computer vision due to er-
rors in the low-level processing, scene changes by the cam-
era viewpoints, and the complexity of semantic representa-
tions [22]. In addition to simple human (e.g. single person)
activity recognition, researchers have proposed methodolo-
gies for recognition of human-human (person-to-person) in-
teractions [14, 17], human-object interactions [12], and
group activities [16]. Human-vehicle interactions may be
categorized as human-object interactions.

The problem of the recognition of human-vehicle inter-
actions has not received the same level of attention as other

Figure 1. A raw image of a vehicle (left) and its matching synthetic
3-D vehicle model (right). The 3-D model is used for 1) the shape
based matching by a vehicle-only model (black color), 2) extrac-
tion of regions-of-interest (ROIs) by four door regions (rectangular
shape), and 3) transformation of motion features by the direction
of door opening/closing on each door (double arrows).

interactions. In the study of most human-object interaction
recognition, objects are smaller than humans (e.g. books,
cups, phone, and so on [12]). People carry objects or stand
near objects. On the other hand, most vehicles are larger
than humans in general, and humans can easily be occluded
by vehicles. The occlusion varies significantly as the view-
point of a camera changes. Furthermore, a person may
change the appearance (i.e. shape) of a vehicle by opening
and/or closing its doors, making the problem more difficult.

In this paper, we propose a methodology for the recogni-
tion of human-vehicle interactions. The appearance of ve-
hicles/humans, occlusion caused by vehicles, and motion of
humans are view-dependent in the human-vehicle interac-
tions. To solve these difficulties, our approach uses syn-
thetic 3-D vehicle models for various purposes: 1) localiza-
tion of vehicles by the shape based matching, 2) regions-of-
interest (e.g. doors) specification, and 3) transformation of
the optical flow field (see Fig. 1). The transformation is ac-
complished by measuring the direction of door opening or
closing that fits the optical flow field. As a result, our sys-
tem is able to extract view-independent features. We train
an SVM classifier with the view-independent features for
the classification of interactions.

Our contribution is a view-independent system that rec-
ognizes complex human-vehicle interactions using 3-D ve-
hicle models. The system processes a dataset taken from



various viewpoints. The proposed approach has several
benefits over previous approaches. First, our approach is
able to extract view-independent features from human mo-
tion. Consequently, the system requires fewer training data
from various viewpoints to achieve the same performance as
previous systems which use view-dependent features. Sec-
ond, our approach is able to reduce computation time and
to recognize multiple occurrences of interactions. This ad-
vance is possible because we specify ROIs based on local-
ization of vehicles and their fitted 3-D models, while most
of the previous approaches specified ROIs based on detec-
tion of humans.

The paper is structured as follows. Section 2 describes
previous work related to our paper. Section 3 presents a
system overview. In Section 4, 5, and 6, we present our
methodology for the recognition of human-vehicle interac-
tions. In particular, Section 4 describes low-level process-
ing (e.g. vehicle detection) of our system. Section 5 dis-
cusses the selection of features, and provides a methodol-
ogy to transform the features for view-independent feature
extraction. Section 6 illustrates a classifier for atomic inter-
actions on each frame and representations for the recogni-
tion of composite interactions. Our experimental results are
presented in Section 7. The paper concludes with Section 8.

2. Previous works
The problem of vehicle detection and tracking is a crit-

ical issue in vehicle related research. The problem has
been studied in a variety of environments. The cameras are
placed in various places; poles, buildings, traffic lights, and
inside a vehicle. The scenes are also taken from different
types of roads: straight roads, crossroads, and highways.

Sun et al. [20] presented a review of the problem of vehi-
cle detection and integrating detection with tracking. Jun et
al. [7] and Tamersoy and Aggarwal [21] proposed systems
that detect vehicles in order to count the number of vehicles
in highway traffic. Lee et al. [8] presented a novel system
to detect illegally parked vehicles using 1-D transformation
and compared the system with state-of-art systems.

Joo and Chellapa [6] recognized activities in a parking
lot, such as parking, dropping off, and picking up. The ac-
tivities of “dropping off” and “picking up” are similar to
“getting out of a car” and “getting into a car.” For the recog-
nition of such activities, they used attribute grammars to
represent the activities. Their contribution was on the repre-
sentation of specific activities using the attribute grammars,
not on the accurate detection of objects or motions. There-
fore, their system was neither fully automatic nor view-
independent.

Several researchers have tried to use 3-D models to rec-
ognize more complex activities from arbitrary viewpoints.
The usage of 3-D models is focused on human representa-
tions for human recognition [10] or object representations

Figure 2. An overview of the system

for object detection [19]. Song and Nevatia [19] proposed
a methodology to detect and track vehicles using 3-D mod-
els from various viewpoints. They extracted 2-D shape tem-
plates from 3-D models and matched the templates with ob-
served foreground. They formed a hypothesis for vehicle
information and refined it by a data driven Markov Chain
Monte Carlo (MCMC) process.

The descriptors based on histogram of oriented gradient
(HOG) and histogram of oriented optical flow (HOOF) have
popularly been used for object recognition and action clas-
sification [3, 4, 11]. Dalal and Triggs [4] used a dense grid
of HOG to detect humans. Chaudhry et al. [3] recognized
10 basic human actions including running, side walking,
waving, and jumping by classifying a HOOF time-series.
Training sets of the both systems [3, 4] are, however, taken
from the limited viewpoints (front-and-back views or side
views). Marszalek et al. [11] recognized 12 complex hu-
man actions from various viewpoints by the mixture of the
descriptors. The labeled actions consist of “getting out of
a car,” “driving a car,” “hand shaking,” and “hugging per-
son.”. The descriptors include HOG, HOOF, SIFT, and 3-
D/2-D Harris detector. The problem of their system was that
the recognition rate of “getting out of car” is about 15 %,
which is lower than the recognition rates of other actions.
They identified scene classes and combined them with the
descriptors in order to improve performance. The precision
of the recognition of “getting out of car” did not improve.

3. System overview
This section provides an overview of our system, which

is summarized in Fig. 2. For vehicle detection, we obtain
foreground masks by using an adaptive background mixture
model. Foreground blobs are extracted from the foreground
masks using morphological operations. The system tracks
the extracted blobs and classifies them as vehicle / non-
vehicle blobs. For vehicle blobs, we extract geometrical
parameters (e.g. position, size, orientation, and tilt angle) of
vehicles by matching the vehicle blobs with 2-D projection
templates of 3-D vehicle models. We further identify ROIs



of the vehicle blobs by the 3-D vehicle models with the esti-
mated parameters. Optical flow and gradient are computed
on the extracted ROIs. The system transforms the optical
flow field based on the extracted vehicle pose. The fields be-
come view-independent after transformation. Thus, HOOF
and HOG of the same actions in different viewpoints can
have similar distributions after transformation. We train an
SVM classifier for the view-independent features to classify
atomic interactions. Our system recognizes composite hu-
man interactions with the vehicles by representations of the
temporal structure of the atomic interactions.

4. Vehicle localization

Accurate localization of vehicles is an important first
step for the system. For the accurate vehicle localization,
we first detect and track foreground blobs, then classify the
blobs as vehicle / non-vehicle blobs. For vehicle blobs, we
match silhouettes of them to silhouettes of synthetic 3-D
vehicle models. Therefore, we can extract geometrical pa-
rameters and a type of the vehicles. We will describe each
of these processes below.

4.1. Blob detection / tracking

Our system uses an adaptive Gaussian mixture model
for background subtraction based on Zivkovic’s work [23].
Their methodology updates parameters and the number
of components of the mixture model after an efficient
scene adaptation. Connected component analysis and ero-
sion/dilation are applied to the detected foreground pixels to
detect foreground blobs. The system removes noisy blobs
whose size is smaller than an assigned threshold.

In order to track blobs, we extend the W4 tracking al-
gorithm (Haritaoglu et al. [5]). The W4 system tracks ob-
jects for five different cases. The five cases are ‘one-to-one
matching,’ ‘objects splitting into multiple regions,’ ‘sev-
eral objects merging into one,’ ‘new object appearing,’ and
‘object disappearing.’ They computed the correspondence
between foreground blobs by measuring distance of blobs
with a dynamic shape model for tracking objects.

Our approach is to use SIFT feature points to measure
similarity of blobs [9] as shown in Eq. 1. The similar-
ity of two blobs (blob2(t+1), blob2(t)) are measured by the
number of feature points on blob 1 in frame t (blob1(t))
that are matched to feature points on blob 2 in frame t+1
(blob2(t+1)). The distance of two SIFT feature points (SF1

and SF2) can be computed as shown in Eq. 2.

Similarity (blob1(t), blob2(t+ 1)) =
| {(SFi, SFj), SFi ∈ blob1(t), SFj ∈ blob2(t+ 1)

| (i, j) = argmax
(a,b)

Distance(SFa, SFb)} | (1)

where,

Distance (SF1, SF2) =
∑
δ̂

(
SF1(δ̂)− SF2(δ̂)

)
+

(SF1(p)− SF2(p)) · wp + (SF1(S)− SF2(S)) · wS (2)

Here, | A | denotes the number of elements in a set A. δ̂
is a 128 dimension vector of descriptors, p is position, and
S is size. Weights wp and wS correspond to features p and S,
respectively. The match of SIFT points is quickly found by
a non-iterative greedy algorithm. Then, we make a matrix
to represent the similarity of blobs in frame t (blob (t)) to
blobs in frame t+1 (blob (t+1)). The matrix is analyzed to
track blobs for the occurrences of the five cases that the W4
system categorized.

4.2. Blob classification

The shape based matching requires expensive computa-
tion. The matching on all the blobs is not efficient for the
system. The system classifies blobs as vehicle / non-vehicle
blobs to exclude non-vehicle blobs from the shaped based
matching. The difficulty for classifying objects is on the
classification of multi class objects. By tracking blobs, the
system knows whether the blobs are merged or not. Thus,
the system collects separated blobs (single class object) and
classifies them.

We use shape features (e.g. size and compactness) and
histogram of SIFT feature points (bag of visual-words [18])
of the single class object blobs to train a classifier. To rep-
resent the histogram of SIFT feature points, we set up 10
bins for SIFT feature points (extracted in Section 4.1) by
K-means clustering. Since SIFT feature points are scale-
invariant, additional features such as size and compactness
can be useful to obtain shape-based information. The size
of the blob is equal to the number of pixels in the blob. The
compactness is equal to the value of the square of the num-
ber of pixels on the boundary over the size. We build a 12
dimension feature vector by a mixture of shape features (2
dim.) and histogram of SIFT feature points (10 dim.). The
K-nearest neighbor classifier is trained with the feature vec-
tor to classify vehicle / non-vehicle blobs.

4.3. Shape based matching of 3-D vehicle models

After a blob is classified as a vehicle, we extract its geo-
metric parameters and type by the shape based matching of
3-D vehicle models. We build synthetic 3-D vehicle models
of a sedan and an SUV (sports utility vehicle), then extract
2-D templates from the 3-D models. We adopt Song and
Nevatia’s approach [19]. They extracted 2-D images for 72
bins from 360◦ orientation and 19 bins from 90◦ tilt angle
for optimal processing. Each 3-D vehicle model has 1368
extracted 2-D templates. Sample images of 2-D templates
from our 3-D vehicle models are shown in Fig. 3.



Figure 3. Extracted 2-D templates from a 3-D vehicle model
(sedan)

Figure 4. A vehicle from various viewpoints is detected, and its
silhouettes are marked by white color lines. The silhouettes are
generated by a 3-D vehicle model (SUV).

For the shape based matching, the system scales the 2-D
vehicle templates to have a similar size as the foreground
blob. The system calculates an area matching score and
a contour matching score. The area matching score is the
number of overlapped pixels of blobs and 2-D templates.
The contour matching score is obtained by chamfer match-
ing [2] on edges of blobs and contours of 2-D templates.
The system calculates the final matching score by the mul-
tiplication of the two matching scores. The geometrical pa-
rameters and type of a vehicle can be extracted from the 2-D
template which has the maximum value of the final match-
ing score. The detection of an SUV from eight different
orientations is shown in Fig. 4.

5. View-independent feature extraction

The extraction of appropriate features is an important
step that enables the system to operate fast and robustly.
We extract view-independent features after a vehicle is cor-
rectly localized. By using 3-D vehicle models, ROIs are

Figure 5. ROI extraction. The regions of four doors are extracted
separately.

specified. On each ROI, we extract optical flow and gra-
dient. The optical flow field is not view-independent. To
make it view-independent, the system transforms it using 3-
D vehicle models. The transformation is accomplished by
measuring the direction of door opening / closing that fits
the optical flow field. We illustrate these processes below.

5.1. Regions-of-interest extraction

Careful specification of regions is an important step in
ROI analysis. In the human-vehicle interactions of “a per-
son getting into/out of a vehicle,” a vehicle is parked so it
does not change the location and orientation. Therefore, the
system specifies ROIs only once in a human-vehicle inter-
action. People can get in or out of a vehicle through specific
regions (door regions). Thus, the extraction of features on
the ROIs can be enough for the recognition of interactions.
By maintaining multiple ROIs, the system is also able to
recognize several interactions simultaneously (e.g. a driver
and a passenger getting out of a vehicle at the same time).

We can specify ROIs of a vehicle using 3-D vehicle mod-
els with movable doors (see Fig. 1) after accurate localiza-
tion of a vehicle. The ROIs are correctly sized and located
on the vehicle by the 3-D vehicle models as shown in Fig.
5.

5.2. Transformation of the optical flow field

To recognize human-vehicle interactions, it is critical to
understand motion of humans. We use optical flow to detect
and analyze motion. Accurate optical flow calculation is
important for motion analysis. Ogale and Aloimonos [13]
proposed an advanced optical flow detection algorithm and
presented its implementation. We apply their implemen-
tation to extract optical flow accurately. However, relying
on the raw extracted optical flows may cause problems be-
cause the optical flow field appears different as viewpoint
changes. Particularly, the raw optical flow field cannot dis-
tinguish whether human opens or close a door.

We propose an approach to transform the optical flow
field, so the system is able to extract view-independent fea-
tures. Using the transformation, the system makes the direc-
tion of optical flow vectors extracted from the same interac-



Figure 6. 2-D templates from various view points including door
opening/closing direction and their graphs representing the range
of direction. Optical flow is remapped by the direction of a vehicle.
When a driver side door is opened (closed), optical flow vectors on
the ROI are transformed so their angles are ranged from 0◦ to 90◦

(from 180◦ to 270◦).

tion occurrences be similar, regardless of its viewpoint. The
direction of optical flow is ranged from 0 to 2π. By trans-
formation, we want to make the range of direction of optical
flow on opening (or closing) door be from 0 to π/2 (or from
π to π·3/2). In order to do that, we estimate the direction of
door opening (or closing) using 3-D vehicle models. In the
3-D vehicle models, we draw a curved line for each door
to represent the direction. As we change orientation of the
vehicle models, the shape of the curved line changes also as
shown in Fig. 6. We can estimate the range of direction for
door opening (or closing) from the selected 2-D templates
(from Section 4.3) of the 3D models. Let [θ1, θ2] (or [θ3,
θ4]) be the range of direction for door opening from an as-
signed viewpoint. We can now transform the direction of
optical flow vectors by the following equation:

Θ′ =
π

2
·
(

mod(Θ− θi, 2π)
mod(θi+1 − θi, 2π)

+ (i− 1)
)

(3)

if {θi ≤ Θ ≤ θi+1} or {θi+1 ≤ θi & (Θ ≤ θi+1‖θi ≤ Θ)}
for i = 1, 2, 3, 4 (θ5 = θ1)

As a result, the system obtains a set of optical
flow vectors whose direction is transformed to be view-
independent. Using our 3-D vehicle model, the system
adaptively transforms the vectors depending on the
viewpoint.

5.3. Histogram of transformed & oriented optical
flow and histogram of oriented gradient

We build two histograms to reduce the dimension of fea-
tures. One histogram is of the optical flow field for analyz-
ing motion and the other histogram is of the gradient field
for analyzing shape. Both transformed optical flow and raw
image gradient are used to construct the histograms: motion
is significantly dependent on viewpoints, while shape of hu-
mans does not.

We classify interactions (R) on an image (I). We extract
parameters (geometric parameters and a type), optical flow
field (opfl), and gradient field (grad). After specification of
ROIs and transformation of the optical flow field, we can
obtain transformed optical flow field (T-opfl) and gradient
field on ROI. For dimensionality reduction, we build his-
togram of transformed & oriented optical flow (T-HOOF)
and histogram of oriented gradient (HOG).

P(R | I) ≈ P(R | param, I)
≈ P(R | param, opfl(I), grad(I))
≈ P(R | T -opfl(ROI), grad(ROI))
≈ P(R | T-HOOF(ROI), HOG(ROI)) (4)

Here, R refers to interactions and param is geometric pa-
rameters and a type of a vehicle. opfl (I) and grad (I) are
optical flow field and gradient field on image I, respectively.

To build histogram of transformed & oriented optical
flow (T-HOOF), we create 9 bins for each direction (open-
ing, closing, and the two others) so that we have 36 bins in
360◦ for the histogram. Each optical flow vector is weighted
by its magnitude and is smoothed by Gaussian filter. To
make T-HOOF scale-invariant, each bin is divided by the
area of the ROI. Examples of T-HOOF and HOOF repre-
sentations are shown in Fig. 7

The second feature is HOG on ROIs. T-HOOF is a
strong feature to detect motion. However, the system may
not distinguish the interaction of “a person opening a door”
from the interaction of “a person appearing from a vehicle.”
To overcome this difficulty, we calculate gradient field on
pixels where the magnitude of optical flow vectors is non-
zero. Because the shape of humans is more complex than
the shape of doors (more edges), the magnitude of the gra-
dient on humans is generally higher than the magnitude of
gradient on doors. We use the same number of bins for
HOG as the ones from the calculation of T-HOOF.

6. Recognition of interactions
Our system classifies atomic interactions on doors of

the vehicle using view-independent features in each frame.
Then, the system recognizes complex human-vehicle inter-
actions of person getting into and out of a vehicle using
atomic interaction classification results.



Figure 7. Representations of HOOF and T-HOOF. (a) and (b) rep-
resent the same atomic interaction, “a person opens a door,” but
they are taken from different viewpoints.

6.1. Atomic interaction classification

When a person gets into or out of a vehicle, the person
performs several distinguishable actions. In order to get in
a vehicle, a person gets close to the vehicle, opens a door,
disappears into the vehicle, and closes the door. Similarly,
in order to get out of a vehicle, a person opens a door, ap-
pears from the vehicle, closes the door, and gets away from
the vehicle. To represent these sub-events, we define six
classes of atomic interactions as follows: “person appear-
ing into / disappearing from a vehicle,” “person opening /
closing a door,” “person walking around a vehicle,” and “no
movements.”

We classify these six interactions (R) on image (I) by
an SVM classifier. Several researchers [3, 11] used an
SVM classifier with HOOF and/or HOG features, and they
showed that an SVM classifier performs well with these fea-
tures. Instead of training P(param, opfl(I), grad(I) |R),
we train P(T-HOOF(ROI), HOG(ROI) | R) after extract-
ing T-HOOF and HOG features. We use an SVM classi-
fier with a RBF kernel to train the features simultaneously.
We classify the six classes of atomic interactions on ROIs
robustly using those two features in various viewpoints.

More details on classification results of these actions are
presented in Section 7.

6.2. Composite interaction recognition
Once our system classifies six atomic interactions on

ROIs in all frames, our system recognizes composite inter-
actions based on the classification of atomic interactions.
Temporal filtering is performed for improving initial inter-
action classification performance and for clustering video
frames which are classified as a same interaction. Thus, we
can have a series of atomic interactions which are composed
of consecutive frames.

Ryoo and Aggarwal [17] proposed a general methodol-
ogy for complex human activity recognition using Allen’s
event presentation [1]. Compared with their system, our
system does not require the recognition of general human
activities to solve the problem. All the interactions are rep-
resented by one interval of temporal logic, “before.” The
representations of interactions that a person gets into or out
of a vehicle are as follows, where p denotes a person and v
denotes a vehicle.

person getting into vehicle(p, v) = (

list( def(w, walk around vehicle(p, v)),

list( def(o, open door(p, v)),

list( def(d, disappear into vehicle(p, v)),

list( def(c, close door(p, v)))))),

and( and(before(w, o), before(o, d)),

before(d, c) )

);

person getting out of vehicle(p, v) = (

list( def(o, open door(p, v)),

list( def(a, appear from vehicle(p, v)),

list( def(c, close door(p, v)),

list( def(w, walk around vehicle(p, v)))))),

and( and(before(o, a), before(a, c)),

before(c, w) )

);

Our system recognizes the activity if all its sub-events
are recognized. To reduce the false negatives of activity
recognition, our system allows missing or wrong presenta-
tion of one interval temporal logic of three interval temporal
logic. The idea of allowing missing or wrong presentation
has been suggested by Pinhanez and Bobick as well [15].

7. Experimental results

We test the implementation of the system to recognize
composite interactions such as “a person getting into a ve-
hicle” and “a person getting out of a vehicle.” We gener-
ated two video datasets for our experiments. Each dataset



Figure 8. Overall accuracy rates for the classification of atomic in-
teractions to compare T-HOOF with HOOF. ‘only,’ ‘+HOG,’ and
‘+HOG +TF’ denote that HOOF/T-HOOF is used without addi-
tional features or processing, with HOG feature, and with HOG
feature followed by temporal filtering, respectively.

includes four executions of two composite interactions per-
formed by a driver from eight different views. Thus, each
dataset has 64 composite interactions. We use 32 interac-
tions for training and the other 96 interactions for testing.
Vehicles used in the dataset are a sedan and an SUV. The
videos were taken in 12.5 frames per second in the resolu-
tion of 720 * 480.

Table 1 shows the confusion matrix of the classification
rates of atomic interactions with a sedan. The recognition
rates of classification are 74 % at the worst and 84 % at
the average before temporal filtering, and 78 % at the worst
and 89 % at the average after temporal filtering. We also
present accuracy rates for the classification of atomic inter-
actions to compare T-HOOF with HOOF as shown in Fig.
8. T-HOOF performed superior to HOOF in all provided
conditions. The performance of HOOF and T-HOOF is im-
proved by adding a feature, HOG and by processing tempo-
ral filtering.

Table 2 shows the interaction recognition results on the
dataset. We recognize two complex interactions: “a per-
son getting out of a vehicle” and “a person getting into a
vehicle.” The representations of the interactions are pre-
sented in Section 6.2. 83 of 96 composite interactions are
recognized correctly, while 13 interactions are not detected
and 1 interaction is detected erroneously. Because of the
accurate representation on composite actions, the system is
superior to the previous systems. The results are, more-
over, obtained from consecutive sequences of interactions,
and humans and vehicles are not manually segmented. The
system recognizes sequences of composite human-vehicle
interactions with a high degree of accuracy.

Fig. 9 shows example sequences of human-vehicle in-
teractions which our system recognized correctly. Four
human-vehicle interactions are presented horizontally on
each row. Interactions on the first and third row are “per-
son getting out of a vehicle,” and interactions on the second
and fourth row are “person getting into a vehicle.”

Table 1. Atomic interaction classification results (a) before tempo-
ral filtering and (b) after temporal filtering. ‘open,’ ‘cls,’ ‘appr,’
‘dspr,’ ‘walk,’ and ‘none’ denote “opening a door,” “closing a
door,” “appearing from a vehicle,” “disappearing into a vehicle,”
“walking around a vehicle,” and “no movements,” respectively.
The numbers of frames processed per interaction is 1122, 682,
1148, 1043, 1209, and 1673, respectively.

Dataset Sequence
True False False

positive positive negative

Dataset 1 getting out 21 0 3
(Sedan) getting in 23 0 1

Dataset 2 getting out 20 1 4
(SUV) getting in 19 0 5
Total 96 83 1 13

Table 2. Composite interaction recognition results

8. Conclusions

We have recognized complex human-vehicle interac-
tions with vehicles with a high degree of accuracy. The
proposed methodology classifies atomic interactions from
various viewpoints and improves the recognition rates of
composite interactions. The contributions of our work are:
the extraction of view-independent features using 3-D vehi-
cle models and the recognition of “getting into or out of a
vehicle” interactions. We showed that our approach is supe-
rior to the previous approaches. The methodology benefits
from decreasing the requirement of training data from vari-
ous viewpoints.
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Figure 9. An example sequences of human-vehicle interactions. ‘open,’ ‘cls,’ ‘appr,’ ‘dspr,’ ‘walk,’ and ‘none’ are defined in Table. 1. All
clips are cropped from input frames by the specified ROIs. They are arranged by time (left to right).
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