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Motivation
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• Recognize actions in video

• Applications

Surveillance: Sports & entertainment:

Wildlife habitat
monitoring:

Tools for hearing 
impaired:

skate

walk
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Problem statement
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Given:

Task: Action 
Recognition

Dictionary of labeled training data

walk run jump wave

unknown action

walk

Recall: challenges
– non-rigid object
– complex motion
– intra and inter object motion variability
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Action recognition framework
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 Action recognition = Supervised learning problem, 

where data samples are video clips

 Two main ingredients:

— Representation of samples

— Classification



Action representation
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video clip bag of dense 
local featureslocal features
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• How to reduce the dimension of bag of local features?

video clip bag of dense 
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Action representation
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• How to reduce the dimension of bag of local features?

video clip

Action representation

pdf

— Ideally, one should learn and compare pdfs of features
— Problem: it may not reduce the dimensionality

bag of dense 
local featureslocal features



Action representation
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• How to reduce the dimension of bag of local features?

video clip

Action representation

— Idea-1: Learn and compare 1st order statistics (mean)
— Problem: not sufficiently discriminative

Meanbag of dense 
local featureslocal features
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• How to reduce the dimension of bag of local features?

video clip covariance 
matrix

Action representation

— Idea-2: Learn and compare 2nd order statistics (covariance)
[Tuzel-Porikli-Meer PAMI’08]

bag of dense 
local featureslocal features
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• How to reduce the dimension of bag of local features?

video clip covariance 
matrix

Ψ
Action representation

— Idea-2: Learn and compare 2nd order statistics (covariance)

Main thesis: covariance matrix is “sufficient”   
for action recognition

— Output: feature covariance matrix 
(e.g., 13-dim vector -> 91-dim covariance matrix)

[Tuzel-Porikli-Meer PAMI’08]

silhouette tunnel bag of dense 
local features



Covariance manifold

• Covariance matrices form:
— a Riemannian manifold
— not a vector space

• Matrix-log maps a Riemannian manifold
to a vector space

—
—

out of 3520

C
C’

Manifold of
covariance matrices

matrix-log

log(C)

log(C’)

TUDUC =
TUDUC )log(:)log( =

vector space

[Arsigny-Pennec-Ayache’06]



Classification based on sparse linear representation

out of 3521

seg1

seg2

segK

label(1)

label(2)

label(N)

Ψ

C1

C2

CN

Cquery

Matrix-log
&

vectorization

Matrix-log
&

vectorization

Matrix-log
&

vectorization

Matrix-log
&

vectorization

pquery

P

...

Decide query label

Estimated query label

Ψ

Ψ

Ψ

pN

p2

p1

[Wright et al., PAMI’09]



Classification algorithm

Each coefficient of       weights the contribution of training segments to query segment

out of 3522

Step 1: Compute residual error:

Step 2: Determine query label
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Silhouette-based local features
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Implementation issues
• How to process a long video?
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— Break it into segments

• What should be the length of segments?
?

time
x

y—Period for human action ≈ 0.4 — 0.8 s

—Segment  length  ≈ 10 — 20 frames

(@25 fps video)



Action segments
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• No knowledge about the beginning and end of periods
— Use overlapping segments

• Additional benefits of overlapping segments
— Reduced sensitivity to temporal action misalignment
— Richer dictionary



Segment-level classification
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[Wright et al., PAMI’09]



From segment decisions to a sequence decision
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walk

• How to get the labels of query video ? 
— Majority rule



Summary of the approach
• Partitioning into segments
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Summary of the approach
• Partitioning into segments
• Action representation for each segment

video clip covariance 
matrix

Ψ
Action representation

silhouette tunnel bag of dense 
local features
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Summary of the approach
• Partitioning into segments

• Segment-wise action recognition
• Action representation for each segment

Cquery

…

C1 C2 CK

Bag of labeled feature covariance matrices

label(1) label(2) label(K)

Action recognition Estimated label of 
query segment
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Summary of the approach
• Partitioning into segments

• Segment-wise action recognition

• Decision fusion 

walk

• Action representation for each segment

31 out of 35



Experimental results
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• Datasets
— Weizmann: 9 persons x 10 actions (180x144)

— UT-Tower: 6 persons x 9 actions x 2 times (about 90x70)

wave1 wave2

run

side skip walk

pjumpjumpjumping-jackbend

point stand dig walk carry

runwave1 wave2jump
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Performances

• Weizmann dataset: (LOOCV, N=8)

Method Proposed NN-based Gorelick Niebles Ali Seo

SEG-CCR 96.74% 97.05% 97.83% — 95.75% —

SEQ-CCR 100% 100% — 90% — 96%

• Correct classification rate (CCR)
— SEG-CCR:  % of correctly classified query segments 
— SEQ-CCR:  % of correctly classified query sequences

Method Proposed NN-based

SEG-CCR 96.15% 93.53%

SEQ-CCR 97.22% 96.30%

• UT-Tower dataset: (LOOCV, N=8)
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Computational complexity

• Platform: Dual Core 2.2 GHz + 2GB Memory + Matlab 7.6

• Action representation

video: 180 x 144 x 84 — 0.12 sec/frame (8.3fps)

• Action classification 

0.07 sec/segment (14.3fps)



Conclusions

• We proposed a novel approach to action recognition:

—action representation = covariance matrix of local features
—action classification = sparse-representation-based classifier

• The proposed approach has

— state-of-the-art performance on Weizmann dataset
— 100% performance on non-static actions in low-resolution 

UT-Tower dataset
— low memory requirements with close to real-time 

performance
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