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Abstract. A novel framework for action recognition in video using empirical co-
variance matrices of bags of low-dimensional feature vectors is developed. The
feature vectors are extracted from segments of silhouette tunnels of moving ob-
jects and coarsely capture their shapes. The matrix logarithm is used to map the
segment covariance matrices, which live in a nonlinear Riemannian manifold, to
the vector space of symmetric matrices. A recently developed sparse linear rep-
resentation framework for dictionary-based classification is then applied to the
log-covariance matrices. The log-covariance matrix of a query segment is approx-
imated by a sparse linear combination of the log-covariance matrices of training
segments and the sparse coefficients are used to determine the action label of
the query segment. This approach is tested on the Weizmann and the UT-Tower
human action datasets. The new approach attains a segment-level classification
rate of 96.74% for the Weizmann dataset and 96.15% for the UT-Tower dataset.
Additionally, the proposed method is computationally and memory efficient and
easy to implement.
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1 Introduction

Algorithms for recognizing human actions in a video sequence are needed in applica-
tions such as video surveillance, where the goal is to look for typical and anomalous pat-
terns of behavior, and video search and retrieval in large, potentially distributed, video
databases such as YouTube. Developing algorithms for action recognition in video that
are not only accurate but also efficient in terms of computation and memory-utilization
is challenging due to the complexity of the task and the sheer size of video.

The action recognition problem, in its full generality, is challenging due to the com-
plexity of the scene (multiple interacting moving objects, clutter, occlusions, illumi-
nation variability, etc.), the camera (imperfections, motion and shake, and viewpoint),
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and the complexity of actions (non-rigid objects and intra- and inter- class action vari-
ability). Even when there is only a single uncluttered and unoccluded object 1 and the
camera and illumination conditions are perfect (a typical assumption in the literature),
the complexity and variability of actions makes action recognition a difficult problem.

The accuracy and efficiency of an action recognition algorithm critically depends
on 1) how actions are modeled and represented and 2) how distances between action
representations are measured for classification. To date, various action models and rep-
resentations have been proposed, from those based on Hidden Markov Models [14,
12], through interest-point models [10, 4, 9, 8] which are sparse (relative to the number
of pixels) yet highly discriminative, e.g., corners and SIFT features, and local motion
models, e.g., kinematic characteristics from optical flow [1] and 3D local steering ker-
nels [11], to silhouette tunnel shape models [6, 7]. Similarly, various metrics have been
proposed to measure distances between action representations, from the Hausdorff dis-
tance between sets of action feature vectors in Euclidean space extracted from multiple
action instances (e.g., see [6]) to the matrix cosine similarity measure (Frobenius inner
product) between matrices of action feature vectors [11]. The methods developed to-
date are either computationally and/or memory intensive and/or their accuracy varies
significantly across different data sets.

In [7] we developed a nearest-neighbor (NN) supervised classification algorithm
for human action recognition using a labeled dictionary of empirical feature-covariance
matrices. These were obtained from bags of low-dimensional feature vectors extracted
from the object silhouette tunnels and coarsely captured their shape. A Riemannian met-
ric on the manifold of covariance matrices was used for determining nearest neighbors.
In this paper, we apply the recently developed sparse linear representation framework
for dictionary-based classification [13] to the matrix logarithm of the feature-covariance
matrices as an alternative to NN-classification. We report the performance of this new
approach on the Weizmann human action dataset [6] and the UT-tower dataset [3] pro-
vided by the ICPR 2010 “Aerial View Activity Classification Challenge”. We also com-
pare its performance with the method we previously developed in [7] that uses the same
action representation (covariance matrix of silhouette shape features) but a different
classification rule (NN-classifier).

2 Framework

We view action recognition as a supervised classification problem where the goal is to
classify a query video segment using a dictionary of previously labeled training video
segments. Video segments are typically high dimensional, e.g., a 20-frame video seg-
ment with a 128 × 128 frame resolution is, roughly, a 3 × 105-dimensional vector,
whereas the number of training video segments is meager in comparison. It is therefore
impractical to learn the global structure of training video segments by building clas-
sifiers directly in high-dimensional space. Graphical models, which attempt to capture
global dependencies through local structure, are powerful; but training classifiers based
on these models is challenging.

1 Such footage may be obtained by detecting, tracking, and isolating object trajectories.
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2.1 Action representation using low-dimensional feature-covariance matrices

We adopt a “bag of dense local feature vectors” modeling approach wherein a video
segment is represented by a dense set of low-dimensional local feature vectors which
describe the action. The local features, described in detail in Sec. 3, coarsely capture the
shape of an object’s silhouette tunnel (see Fig. 3). The advantage of this approach is that
even a single video segment provides a very large number of local feature vectors (one
per pixel) from which their statistical properties can be reliably estimated. However, the
dimensionality of a bag of dense local feature vectors is still very high as there are as
many feature vectors as pixels. This motivates the need for dimensionality reduction.

Estimating the distribution of the local feature vectors, though ideal, is computation-
intensive and may not lead to a lower-dimensional representation. On the other hand,
the mean feature-vector, which is low-dimensional, can be learned reliably and rapidly
but may not be sufficiently discriminative. In the recent work [7] we discovered that
if the features are well-chosen, then the feature-covariance matrix, which captures the
second-order statistical properties of a bag of feature vectors, provides a remarkably
discriminative representation for action recognition. In addition to their simplicity and
effectiveness, covariance matrices have low storage and processing requirements. The
action representation based on the covariance matrix of a bag of low-dimensional local
feature vectors that coarsely capture the shape of an object’s silhouette tunnel is de-
picted in Fig. 1. The operator which transforms an input video segment into an output
feature-covariance matrix representation is denoted by Ψ .

Input video Silhouette
tunnel

Bag of dense local
feature vectors

Covariance
matrix

... ... ......

...

...

...

Action
representation

Fig. 1: Transformation of a video segment into a feature covariance matrix representation.

2.2 Classification on a covariance manifold

The set of all covariance matrices of a specified size do not form a vector space (they are
not closed under multiplication by negative scalars); they form a Riemannian manifold.
Classification problems on covariance manifolds can be converted into vector-space
classification problems via the matrix logarithm: if C = UDU T is the eigendecom-
position of the covariance matrix C, where D is the diagonal matrix of eigenvalues,
then log(C) := U log(D)UT , where log(D) is the diagonal matrix whose diagonal
entries are the natural logarithms of the corresponding entries of D. The matrix log-
arithm maps the Riemannian manifold of symmetric non-negative definite matrices to
the vector space of symmetric matrices [2].

Recently, in [13] Wright et al. developed a powerful framework (closely related to
compressive sensing) for supervised classification in vector spaces based on finding a
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sparse linear approximation of a query vector in an overcomplete dictionary of training
vectors. The key idea underlying this approach is that a query vector can typically be
well approximated by a sparse linear combination of training vectors belonging to the
same class as the query but cannot be as well approximated by training vectors coming
from a different class. A sparse linear representation can be obtained by solving an l 1-
minimization problem described in Sec. 4. Locations of large non-zero coefficients in
the sparse linear approximation are likely to indicate the label of the query vector. This
approach has been successfully applied to many vision tasks such as face recognition,
image super-resolution, and image denoising. We extend this approach to action recog-
nition by applying it to (column) vectorized log-covariance matrices that we refer to as
samples. Specifically, we approximate the log-covariance matrix of a query segment by
a sparse linear combination of log-covariance matrices of all training segments.

The overall framework for action recognition is depicted in Fig. 2.
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Fig. 2: Overview of the proposed action recognition framework (see Secs. 2.2 and 4).

3 Silhouette tunnel shape features

In this section, we describe the low-dimensional local features that we use to describe
actions. The sequence of 2-D silhouettes of a moving and deforming object (see Fig. 3)
is particularly attractive for action recognition because (i) it accurately captures ob-
ject dynamics, (ii) it can be reliably, robustly, and efficiently computed in real-time
using state-of-the-art background subtraction techniques, and (iii) it is largely invari-
ant to chromatic, photometric, and textural properties of objects which are independent
of their actions. Under ideal conditions, each frame in the silhouette sequence would
contain a white mask (white = 1) which exactly coincides with the 2-D silhouette of
the moving and deforming object against a “static” black background (black = 0). A
sequence of such object silhouettes in time forms a spatio-temporal volume in x-y-t
space that we refer to as a silhouette tunnel. Action recognition may then be viewed as
recognizing the shape of the silhouette tunnel. There is an extensive body of literature
devoted to the representation and comparison of shapes of volumetric objects. Our goal
is to reliably discriminate between shapes; not to accurately reconstruct them. Hence
a coarse, low-dimensional representation of shape would suffice. We capture the shape
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Fig. 3: Left: One frame of the “jumping-jack” human action sequence (top row) and the corre-
sponding silhouette (bottom row) computed using background subtraction from the Weizmann
human action dataset. Right: Each point s0 = (x0, y0, t0)

T of a silhouette tunnel within an N -
frame action segment has a 13-dimensional feature vector associated with it: 3 position features
x0, y0, t0, and 10 shape features given by distance measurements from (x0, y0, t0) to the tunnel
boundary along 10 different spatio-temporal directions shown in the figure.

of a silhouette tunnel by the empirical covariance matrix of a bag thirteen-dimensional
local shape features (described below) from our previous work [7].

Let s = (x, y, t)T denote the horizontal, vertical, and temporal coordinates of a
pixel. Let A denote the set of coordinates of all pixels belonging to an action (video)
segment which is W pixels wide, H pixels tall, and N frames long, i.e.,A := {(x, y, t)T :
x ∈ [1, W ], y ∈ [1, H ], t ∈ [1, N ]}. Let S denote the subset of pixel-coordinates in A
which belong to the silhouette tunnel. With each pixel located at s within the silhou-
ette tunnel, we associate the following 13-dimensional feature vector f(s) that captures
certain shape characteristics of the tunnel:

f(x, y, t) :=[x, y, t, dE , dW , dN , dS , dNE , dSW , dSE , dNW , dT+, dT−]T , (1)

where (x, y, t)T ∈ S and dE , dW , dN , and dS are Euclidean distances from (x, y, t)
to the nearest silhouette boundary point to the right, to the left, above and below the
pixel, respectively. Similarly, dNE , dSW , dSE , and dNW are Euclidean distances from
(x, y, t) to the nearest silhouette boundary point in the four diagonal directions, while
dT+ and dT− are similar measurements in the temporal direction. Fig. 3 depicts these
features graphically. The 13 × 13 “shape” covariance matrix representation CS of sil-
houette tunnel S in the action segment A is given by

CS :=
1
|S|

∑

s∈S
(f(s) − μF )(f(s) − μF )T , (2)

where μF =
∑

s∈S
1
|S| f(s) is the mean feature vector. Note that the size of an action

segment |A| is typically on the order of 105 whereas a 13 × 13 covariance matrix,
being symmetric, has only 91 independent entries. This provides a low-dimensional
representation of the feature vectors no matter how numerous they may be.

4 Classification via sparse linear representation

In this section, we first explain how the log-covariance matrix of a query action segment
can be approximated by a sparse linear combination of log-covariance matrices of all
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training action segments by solving an l1-minimization problem. We then discuss how
the locations of large non-zero coefficients in the sparse linear approximation can be
used to determine the label of the query.

The logarithm of a 13 × 13 covariance matrix C is a 13 × 13 symmetric matrix
log(C) which has only 91 independent entries (elements on and above the main di-
agonal). We use p ∈ R

91 to denote the (column) vectorized matrix of the entries in
log(C) that are on or above the main diagonal. For convenience of exposition, we
will refer to such column vectorized log-covariance matrices as simply ‘samples’. Let
pi,j ∈ R

91 denote the j-th training sample in the i-th class where i = 1, . . . , K , and
j = 1, . . . , ni. Thus there are K action classes, ni training samples in action class i,
and the total number of training samples is given by M =

∑K
i=1 ni. We can stack up

all the training samples from class i, column by column, to form the 91 × n i matrix
Pi := [pi,1 pi,2 · · · pi,ni ]. The 91×M matrix of all training samples is then given by
P := [P1 P2 · · · PK ].

A given query sample q can be expressed as a linear combination of training sam-
ples by solving the matrix-vector equation given by

q = Pα, (3)

where α ∈ R
M is the vector of coefficients. Since M � 91, the system (3) is un-

derdetermined and has a solution except in the highly unlikely circumstance in which
there are less than 91 linearly independent samples across all classes and q is outside of
their span. If a solution to (3) exists, it is necessarily nonunique unless additional prior
information, e.g., sparsity, restricts the set of feasible α.

We seek a sparse solution to (3) where, under ideal conditions, the only non-zero
coefficients in α are those which correspond to the class of the query sample. If (3) has
a solution α∗ with r < 91/2 non-zero coefficients and every set of 91 columns of P is
linearly independent, then α∗ is the unique sparsest solution to (3) (see [5]) which can
be found, in principle, by solving the following NP-hard optimization problem:

α∗ = argmin ‖α‖0, s.t. q = Pα, (4)

where ‖α‖0 is the so-called l0-norm: the number of non-zero entries in α. A key result
in the theory of compressive sensing (see [5]) is that if the optimal solution α ∗ is suf-
ficiently sparse, then solving the l0-minimization problem (4) is equivalent to solving
the following l1-minimization problem

α∗ = argmin ‖α‖1, s.t. q = Pα. (5)

Unlike (4), this problem is a convex optimization problem that can be solved in poly-
nomial time. In practice, estimates of pi,j may be noisy and (3) may not hold exactly.
In practice one therefore solves the following ε-robust l 1-minimization problem

α∗ = argmin ‖α‖1, s.t. ‖Pα − q‖2 ≤ ε. (6)

It turns out that even when not all sets of 91 columns of P are linearly independent,
the solution α∗ to (6) is still very sparse in the sense that its components, arranged in
decreasing order of magnitude, decay very rapidly.
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We now discuss how the locations of large non-zero components of α ∗ can be used
to determine the label of the query. Each component of α ∗ weights the contribution of
its corresponding training sample to the representation of the query sample. Ideally, the
sparse non-zero coefficients should only be associated with training samples that come
from the same class as the query sample. In practice, however, non-zero coefficients will
be spread across more than one action class. To decide the label of the query sample,
we follow Wright et al. [13] and use a reconstruction residual error (RRE) measure
to decide the query class. Let α∗

i := [α∗
i,1 α∗

i,2 · · · α∗
i,ni

]T denote the coefficients
associated with training samples from class i, i.e., columns of P i. The RRE measure of
class i is then defined as:

Ri(q, α∗) := ‖q− Piα
∗
i ‖2. (7)

To the query sample q we assign the class label that leads to the minimum RRE, i.e.,

label(q) := arg min
i

Ri(q, α∗). (8)

5 Some practical considerations and the overall algorithm

One important aspect of human action recognition is the repetitive nature of actions.
Many actions, such as walking, running and jumping, consist of multiple, roughly peri-
odic, “repetitions” of shorter action segments which describe the essential action char-
acteristics. Long video sequences of the same action may exhibit large differences due
to action variability. In addition, the frame-boundaries where one action ends and an-
other begins may not be available in some practical scenarios. This motivates the need to
break a long query video sequence into a sequence of overlapping action segments and
classify each segment. Short overlapping action segments can also increase the number
and diversity of the training set so that the action can be classified more reliably. Ide-
ally, the duration of an action segment should be long enough to contain at least one
“period” of an action. The typical period of many moderately-paced human actions is
on the order of 0.4-0.8 seconds. For a camera operating at 25 frames per second (fps),
this corresponds to an action segment which contains 10–20 frames.

The motion of the centroid of an object’s silhouette across frames is of secondary
importance for action recognition. It is the sequence of deformations of the silhouettes
about their centroids that is crucial. We can remove the motion of the centroids by
aligning them to the same spatial coordinates. It is also possible to make the silhouette
tunnel shape covariance matrix CS invariant to spatial scaling (e.g., due to zoom) and
temporal scaling (e.g., due to temporal subsampling) by normalizing the feature vectors
before computing CS via (2). We refer to [7] for the details.

The overall framework for action recognition can be summarized as follows (see
Figs. 1 and 2). We start with a raw query video sequence which has only one mov-
ing object. We compute the silhouette sequence by background subtraction and then
parse it into a sequence of overlapping N -frame-long segments (we used 8-frame seg-
ments with a 4-frame overlap in our experiments). We map the silhouette tunnel of
each N -frame-long action segment to its shape covariance matrix, take its logarithm
and column-vectorize the upper-triangular portion. To classify each action segment, we
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solve the l1-minimization problem (6) to obtain a sparse linear representation and then
use (7) and (8). Since individual segment decisions are expected to be somewhat noisy,
we perform an additional step to filter out this decision noise. We fuse the decisions of
all action segments in an action sequence using the majority rule to arrive at the final de-
cision for the entire query video sequence. This improves the reliability by overcoming
misclassifications in up to one-half of the test action segments.

6 Experimental results

In this section, we report the results of performance evaluation of the proposed method
on two publicly-available datasets: the Weizmann human action dataset 2 and the UT-
tower human action dataset [3]. Although the KTH dataset 3 has been widely used to
test the performance of action recognition methods, we omit it in our tests since it does
not include silhouette sequences that are needed for a fair comparison.

6.1 Weizmann human action dataset

This dataset consists of 90 low-resolution video sequences (180×144 pixels) that show
9 different people each performing 10 different actions. For each video sequence, a
binary sequence of 2-D silhouettes is also available. As described in Sec. 5, we parse
all silhouette sequences into overlapping 8-frame long silhouette segments with a 4-
frame overlap. We refer to the resulting collection of segments as the silhouette seg-
ment dataset. Performance-evaluation is based on the leave-one-out cross validation
(LOOCV) test. For each query silhouette segment from the segment dataset, we first
remove all those segments which come from the same silhouette sequence as the query
segment. Then, based on the remaining segments in the segment dataset, we determine
the action label of the query segment using the proposed method. Details of the experi-
mental setup can be found in [7]. The correct classification rate (CCR) is defined as the
percentage of query segments that are correctly classified. Since the CCR is based on
classifying individual segments, we call it SEG-CCR. In practice, however, we are usu-
ally interested in classifying a complete video sequence containing an action; not just
one of its segments. Since segments provide time-localized action information, in order
to obtain classification for the complete sequence, we apply the majority rule (dominant
label wins) to the decisions obtained from individual segments of the video sequence
as described in Sec. 5. In this case, we calculate a sequence-level CCR, that we call
SEQ-CCR, defined as the percentage of query sequences that are correctly classified.

The proposed method attained a SEG-CCR of 96.74% and a SEQ-CCR of 100%.
Table 1 shows the action “confusion” matrix based on SEG-CCR values. The element
in row i and column j of the matrix indicates the percentage of action i segments which
were classified as action j. The sum of all elements in every row is 100%. The confusion
matrix indicates that while some actions, such as ‘bend’ and ‘run’, are more confusing,
others, such as ‘walk’ and ‘side’, are easier to distinguish.

2 http://www.wisdom.weizmann.ac.il/∼vision/SpaceTimeActions.html
3 http://www.nada.kth.se/cvap/actions/
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Table 1: Action confusion matrix: Weizmann human action dataset, 8-frame segments with 4-
frame overlap, SEG-CCR = 96.74%.

be
nd

ja
ck

ju
m

p

sj
um

p

ru
n

si
de

sk
ip

w
al

k

w
av

e1

w
av

e2

bend 91.9 1.3 0 0.7 0 0 0 0 4.1 2.0
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jump 0 0 95.1 0 0 2.0 2.9 0 0 0
sjump 0 0.8 0 96.7 0 2.5 0 0 0 0.7

run 0 0 0 1.2 91.6 0 1.2 6.2 0 0
side 0 0 0 0 0 100 0 0 0 0
skip 0 0 1.0 0 4.2 0 92.7 2.1 0 0
walk 0 0 0 0 0 0 0 100 0 0

wave1 0 0 0 0.6 0 0 0 0 99.4 0
wave2 0 1.4 0 0 0 0 0 0 1.4 97.2

Table 2: LOOCV CCR comparison of the proposed method with state-of-the-art methods: Weiz-
mann human action dataset, 8-frame segments with 4-frame overlap.

Method Proposed Guo et al. [7] Gorelick et al. [6] Niebles et al. [9] Ali et al. [1] Seo et al. [11]
SEG-CCR 96.74% 97.05% 97.83% - 95.75% -
SEQ-CCR 100% 100% - 90% - 96%

Table 2 compares the performance of the proposed method with some of the state-
of-the-art action recognition methods, including our previous method [7] based on NN-
classification on the feature-covariance manifold. It is clear that the proposed algorithm
is very close in performance to our previous method and also approaches the perfor-
mance of Gorelick et al.’s method [6].

6.2 UT-tower human action dataset

The UT-tower action dataset is used in the “Aerial View Activity Classification Chal-
lenge” at the ICPR 2010 Contest on Semantic Description of Human Activities (SDHA).
The dataset consists of 108 video sequences with a frame resolution of 360 × 240 pixels
and a frame rate of 10fps. The contest requires classifying video sequences into one of
9 categories of human actions. Each of the 9 actions is performed 2 times by 6 individ-
uals for a total of 12 video sequences per action category. Ground truth action labels,
bounding boxes, and foreground masks for each video sequence are provided. Only the
acting person is included in the bounding box. In addition to the challenges associated
with the low resolution of objects of interest in this dataset – the average height of hu-
man figures is about 20 pixels – there are additional challenges, such as camera jitter,
shadows, and blurry visual cues (see [3] for details).

We conducted experiments using the same procedures as for the Weizmann dataset
including LOOCV. The method proposed here attains a SEG-CCR of 96.15% and a
SEQ-CCR of 97.22%. Table 3 shows the confusion matrices of SEG-CCR and SEQ-
CCR values. Since the UT-Tower dataset is new and no action recognition results are
publicly available for this dataset at the time of writing of this paper, in Table 4 we only
compare the performance of the proposed method with our previous method [7].
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Table 3: Action confusion matrices: UT-Tower human action dataset, 8-frame segments with
4-frame overlap.
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stand 4.4 94.2 1.4 0 0 0 0 0 0 16.7 83.3 0 0 0 0 0 0 0
dig 2.0 1.5 96.0 0 0.5 0 0 0 0 0 0 100 0 0 0 0 0 0

walk 1.4 0 0 98.6 0 0 0 0 0 0 0 0 100 0 0 0 0 0
carry 0 0 0 0 99.5 0.5 0 0 0 0 0 0 0 100 0 0 0 0
run 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 0 0 0

wave1 0 0 0.5 0 0 0 94.1 5.4 0 0 0 0 0 0 0 100 0 0
wave2 0 0 0 0 0 0 7.5 92.5 0 0 0 0 0 0 0 0 100 0
jump 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100

All video sequences except those for pointing and standing are classified without
error. Standing is sometimes confused with pointing whereas pointing is occasionally
confused with standing. Both of these action categories are essentially static poses and
are sufficiently similar to even cause confusion in human observers on account of the
low resolution of the dataset.

Table 4: LOOCV CCR comparison of the proposed method with our previous method: UT-Tower
human action dataset, 8-frame segments with 4-frame overlap.

Method Proposed Guo et al. [7]
SEG-CCR 96.15% 93.53%
SEQ-CCR 97.22% 96.30%

The proposed method is also time-efficient and easy to implement. Our experimen-
tal platform was Intel Centrino (CPU: T7500 2.2GHz + Memory: 2GB) with Matlab
7.6. The computation of 13-dimensional feature vectors and the calculation of log-
covariance matrices can be efficiently implemented on this platform, costing together
about 4.3 seconds per silhouette sequence with spatial resolution of 111× 81 and length
of 89 frames. This method is also memory efficient since the training and query sets es-
sentially store 13 × 13 log-covariance matrices instead of video data. Given a query
sequence with 20 query segments and a training set with 1239 training segments, it
takes about 4.5 seconds to classify all query segments (solving 20 l 1-norm minimiza-
tion problems), i.e., about 0.22 seconds per query segment.

7 Concluding remarks

In this paper, we proposed a new approach to action recognition in video based on
sparse linear representations of log-covariance matrices of silhouette shape features.
The proposed method is motivated by Wright et al.’s work [13] that has been success-
fully applied in the context of face recognition. The salient characteristic of our method
is the fact that it uses log-covariance matrices to represent actions in a vector space.
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Our experimental results on the Weizmann dataset indicate that the classification per-
formance of the proposed method is similar to that of recent successful methods, such as
Gorelick’s method [6] and our previous method [7]. At the same time, its computational
complexity is relatively low in both feature extraction, on account of feature simplicity,
and classification, owing to efficiencies in solving the l1 minimization. On the challeng-
ing UT-Tower dataset, the proposed method outperforms our previous approach based
on the same features and NN classification.
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